

Azure AI Services

Succinctly

Alessandro Del Sole

Foreword by Daniel Jebaraj

3

 Copyright © 2025 by Syncfusion, Inc.

2501 Aerial Center Parkway

Suite 111

Morrisville, NC 27560

USA

All rights reserved.

ISBN: 978-1-64200-248-5

Important licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a

registration form.

If you obtained this book from any other source, please register and download a free copy from

www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal or educational use.

Redistribution in any form is prohibited.

The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other

liability arising from, out of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.

Use shall constitute acceptance of the terms listed.

BOLDDESK, BOLDSIGN, BOLD BI, BOLD REPORTS, SYNCFUSION, ESSENTIAL,
ESSENTIAL STUDIO, SUCCINCTLY, and the ‘Cody’ mascot logo are the registered trademarks
of Syncfusion, Inc.

Technical Reviewer: James McCaffrey

Copy Editor: Courtney Wright

Acquisitions Coordinator: Graham High, content team lead, Syncfusion, Inc.

Proofreader: Jacqueline Bieringer, content producer, Syncfusion, Inc.

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/

4

Table of Contents

About the Author ... 9

Introduction ...11

Assumptions about the reader ..12

Chapter 1 Introducing Azure AI Services ...13

Overview of Azure AI services ..13

The Microsoft Responsible AI Standard and Principles ..13

Azure AI Search...14

Azure AI Language services ..14

Azure AI Document Intelligence ...14

Azure AI Decision services ..15

Azure AI Translator ..15

Azure AI Speech services ..15

Azure AI Computer Vision ..15

Other AI services ...16

Programming with Azure AI services ..17

Chapter summary ...17

Chapter 2 Setting Up the Development Environment ..18

Registering for an Azure subscription ...18

Locating the Azure AI services ...18

Creating a resource group ...19

Installing .NET and .NET SDK ..21

Installing and configuring Visual Studio Code ...22

Additional configuration ..23

5

Creating applications with the .NET CLI ...23

Opening projects in Visual Studio Code ...24

Common errors and exceptions ...24

Chapter summary ...25

Chapter 3 Azure AI Search ..26

Introducing Azure AI Search ...26

Creating a sample application ..27

Creating the Azure resources ..27

Creating a WPF application ...33

Defining the user interface ...35

Performing intelligent search in C# ..36

Running the application ...40

Chapter summary ...40

Chapter 4 Azure AI Language ...41

Introducing Azure AI Language service ..41

Creating a sample application ..42

Setting up the Azure AI Language resources ...42

Creating a WPF sample project ...43

Running the application ...49

Chapter summary ...52

Chapter 5 Azure AI Document Intelligence ..53

Introducing Azure AI Document Intelligence ...53

Services of Azure AI Document Intelligence ..54

Configuring the Azure resources ..54

Sample application: processing invoices ..55

Defining the user interface ...55

6

Document analysis in C# ...56

Running the application ...59

Hints about training and analyzing custom models ...59

Chapter summary ...60

Chapter 6 Azure AI Content Safety ...61

Introducing Azure AI Content Safety ...61

Summary of Azure AI Content Safety capabilities ..61

Services of Azure AI Content Safety ..62

Configuring the Azure resources ..62

Sample application: text safety ...63

Running the application ...66

Sample application: image safety ...66

Defining the user interface ...67

Image safety in C# ...68

Running the application ...70

Hints about content safety analysis on videos ..71

Errors and exceptions...71

Chapter summary ...71

Chapter 7 Azure AI Translator ...72

Introducing Azure AI Translator ..72

Configuring the Azure resources ..73

Sample application: text translation ..73

Running the application ...75

Sample application: transliteration ..76

Running the application ...78

Sample application: dictionary lookup ...78

7

Running the application ...82

Sample application: document translation ..83

Brief introduction to Azure Blob Storage ..83

Setting up the Azure Blob Storage ...83

Creating a Console app ...88

Running the application ...89

Errors and exceptions...91

Chapter summary ...91

Chapter 8 Azure AI Speech ...92

Introducing Azure AI Speech ..92

Speech-to-text ...92

Text-to-speech ...93

Speech translation ...93

Additional features ...93

Creating the required Azure resources ...93

Sample application: speech-to-text ...94

Defining the user interface ...94

Adding speech-to-text capabilities in C# ..95

Running the application ...99

Sample application: text-to-speech ...99

Defining the user interface ...99

Adding text-to-speech capabilities in C# .. 100

Running the application ... 102

Sample application: speech translation .. 102

Defining the user interface ... 103

Adding speech translation capabilities in C# .. 103

8

Running the application ... 106

Errors and exceptions... 106

Chapter summary ... 106

Chapter 9 Azure AI Computer Vision Services .. 107

Introducing Azure AI Computer Vision services .. 107

Exclusions and limitations .. 108

Configuring the Azure AI Computer Vision resources ... 109

Sample application: image analysis .. 110

Defining the user interface ... 110

Image analysis in C# ... 111

Running the application ... 113

Sample application: face detection ... 114

Configuring the Azure resources .. 115

Defining the user interface ... 115

Face detection in C# .. 115

Sample application: OCR ... 117

Defining the user interface ... 117

OCR in C# ... 118

Running the application ... 120

Hints about Spatial Analysis ... 121

Errors and exceptions... 123

Chapter summary ... 123

Conclusion .. 124

9

The Succinctly Series of Books
Daniel Jebaraj

CEO of Syncfusion, Inc.

When we published our first Succinctly series book in 2012, jQuery Succinctly, our goal was to
produce a series of concise technical books targeted at software developers working primarily
on the Microsoft platform. We firmly believed then, as we do now, that most topics of interest
can be translated into books that are about 100 pages in length.

We have since published over 200 books that have been downloaded millions of times.
Reaching more than 2.7 million readers around the world, we have more than 70 authors who
now cover a wider range of topics, such as Blazor, machine learning, and big data.

Each author is carefully chosen from a pool of talented experts who share our vision. The book
before you and the others in this series are the result of our authors’ tireless work. Within these
pages, you will find original content that is guaranteed to get you up and running in about the
time it takes to drink a few cups of coffee.

We are absolutely thrilled with the enthusiastic reception of our books. We believe the
Succinctly series is the largest library of free technical books being actively published today.
Truly exciting!

Our goal is to keep the information free and easily available so that anyone with a computing
device and internet access can obtain concise information and benefit from it. The books will
always be free. Any updates we publish will also be free.

Let us know what you think

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at
succinctlyseries@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand the topic
of study. Thank you for reading.

Please follow us on social media and help us spread the word about the Succinctly series!

mailto:succinctlyseries@syncfusion.com
https://x.com/Syncfusion
https://www.facebook.com/Syncfusion
https://www.linkedin.com/company/syncfusion
https://www.youtube.com/SyncfusionInc

10

About the Author

Alessandro Del Sole is a Xamarin Certified Mobile Developer and former Microsoft MVP.
Awarded MVP of the Year in 2009, 2010, 2011, 2012, and 2014, he is internationally considered
a Visual Studio expert and .NET authority. Alessandro has authored many printed books and
ebooks on programming with Visual Studio, including .NET MAUI Succinctly, Visual Basic 2015
Unleashed, and Xamarin.Forms Succinctly. He has written many technical articles about .NET,
Visual Studio, and other Microsoft technologies in Italian and English for many developer
portals. He has been a frequent speaker at Italian conferences, and he has also produced many
instructional videos in both English and Italian.

Alessandro works as a senior software engineer for Fresenius Medical Care, focusing on
building mobile apps with .NET MAUI in the healthcare market. You can follow him on LinkedIn,
and support him with a coffee.

https://www.syncfusion.com/succinctly-free-ebooks/dotnet-maui-succinctly
https://www.syncfusion.com/succinctly-free-ebooks/xamarin-forms-succinctly
https://www.linkedin.com/in/alessandro-del-sole-4b553329
https://buymeacoffee.com/alessandrodelsole

11

Introduction

Artificial intelligence (AI) is revolutionizing every aspect of modern life, transforming industries,
businesses, and daily experiences. This technology is dramatically accelerating business
processes, and companies that are not embracing AI will soon put their businesses at risk. As
one of the most important technological advancements of the last decades, AI is enabling
machines to learn from data and recognize patterns. It may soon make decisions with minimal
human intervention. This capability is driving innovation across sectors, from healthcare and
finance to manufacturing and entertainment. There are many impacts in terms of automation
and efficiency because AI systems can automate routine and complex tasks, freeing up human
work for more creative and strategic roles. In industries like manufacturing, logistics, and
customer service, AI-powered robots and virtual assistants are boosting productivity and
efficiency. This is strictly connected with the healthcare industry, where AI is enabling early
diagnosis, personalized treatments, and better patient care. AI-driven tools analyze medical
images, predict patient outcomes, and even assist in drug discovery, ultimately saving lives and
reducing costs.

Not limited to this, AI's ability to process massive amounts of data in real time is helping
organizations make smarter, data-driven decisions. In finance, AI-driven algorithms detect fraud,
optimize trading strategies, and assess credit risk with unparalleled speed and accuracy. All
these aspects together help deliver improved customer experiences, which are enhanced with
chatbots, recommendation systems, and personalized marketing.

Cloud platforms like Microsoft Azure are making AI accessible to businesses and developers of
all sizes. Azure AI services fit into the broader AI era by offering powerful tools and services that
allow organizations to take advantage of AI without needing deep expertise in machine learning
or data science. This is called AI democratization, and Microsoft Azure brings AI services to
everyone by providing prebuilt models, APIs, and development tools. This allows developers to
integrate AI capabilities like computer vision, natural language processing, and speech
recognition into their applications easily. Azure’s cloud infrastructure ensures that these AI
services can scale to meet the demands of businesses, from startups to enterprises.

Additionally, Azure AI services seamlessly integrate with the Microsoft ecosystem, including
Office 365, Dynamics 365, and the full Azure offering. This integration allows businesses to
leverage AI within familiar environments, enhancing existing workflows and systems with AI
capabilities. As AI continues to shape the future, platforms like Azure AI services are playing a
critical role in making AI accessible and impactful.

Using Azure AI services can dramatically increase the power and effectiveness of your
applications; however, you need to make important considerations. Like with any other cloud-
based service, applications must be connected to the internet, so you establish an external
dependency that is not under your control, and you need to carefully evaluate the benefits
compared to the costs.

12

This ebook provides an overview of the Microsoft Azure AI services suite from the point of view
of developers working with .NET. Since .NET is available on multiple operating systems, the
examples will be discussed using Visual Studio Code. Obviously, you are totally free to use
Microsoft Visual Studio 2022 if you work on Windows. The companion source code is available
on GitHub.

Assumptions about the reader

This ebook is for software developers working with .NET and the Microsoft stack. Ideally, the
reader should have intermediate knowledge of .NET technology and good knowledge of at least
one of the Microsoft development platforms based on the Extensible Application Markup
Language (XAML), such as Windows Presentation Foundation (WPF), .NET MAUI, or Universal
Windows Platform. This is because most of the code examples will be created using WPF to
provide a convenient user interface that makes it easier to load files that will be analyzed by AI
services and to display the analysis result.

However, the focus of this publication is Azure AI services, so the explanations of the code will
explicitly target this topic. It’s not possible to also provide the basics of WPF and of other .NET
common types, except where strictly required to explain concepts related to AI services.

Syncfusion® offers a full collection of free ebooks, including C# Succinctly and WPF Succinctly,
which you can use as a reference when something is not clear. Also, you should already have
basic knowledge of NuGet, the package manager for .NET, which will be widely used across
this ebook to install libraries from the Azure SDK.

https://github.com/SyncfusionSuccinctlyE-Books/Azure-AI-Services-Succinctly
https://github.com/SyncfusionSuccinctlyE-Books/Azure-AI-Services-Succinctly
https://www.syncfusion.com/succinctly-free-ebooks/csharp
https://www.syncfusion.com/succinctly-free-ebooks/wpf-succinctly
https://www.nuget.org/

13

Chapter 1 Introducing Azure AI Services

Microsoft Azure AI services, formerly Azure Cognitive services, provide a set of APIs and tools
that allow developers to add intelligent features to their applications without needing in-depth
knowledge of AI or data science. These services cover various aspects of artificial intelligence,
such as vision, speech, language, and decision-making. By abstracting the complexity of AI
development, Azure AI services make it easier to integrate AI capabilities into applications,
offering services that are reliable, scalable, and easy to use. This chapter provides an overview
of the services that will be covered in detail in the next chapters.

Overview of Azure AI services

Azure AI services include a wide range of AI capabilities integrated into the Microsoft Azure
cloud platform, as well as into Microsoft 365 and other products. The goal of these services is to
democratize AI, making advanced tools available to enterprises, developers, and users,
regardless of their technical expertise. Microsoft's AI solutions are built on Azure, its cloud
computing platform, leveraging deep learning, machine learning, and cognitive services to drive
automation, insights, and enhanced productivity.

These services are designed to address diverse needs, from natural language processing (NLP)
and computer vision to conversational AI, data analytics, and custom AI model development.
They target different industries such as healthcare, finance, retail, and manufacturing, offering
solutions that can integrate with existing business processes.

The Azure offerings regarding AI are very large, and not all of the platforms can be covered in
this ebook. The next paragraphs provide an introduction to the Azure AI services that will be
covered in the coming chapters.

The Microsoft Responsible AI Standard and Principles

Artificial intelligence is extremely powerful, and it can help solve business problems in a much
faster way. The applications of AI can target different critical sectors—not only in people’s daily
lives, but also in most countries’ public services. In fact, AI is already present in many processes
of healthcare systems, military and defense systems, transportation, politics, and so on.

On the other hand, democratized AI is also available to people that do not have good intentions.
As a common example, generative AI can be easily used to create completely fake content and
news to influence the masses.

For this reason, Microsoft has developed the Responsible AI Standard and the Responsible AI
Principles, a set of guidelines for companies and individuals that take advantage of AI in their
applications. You can find the details of these principles on the official page, but the summary is:
make responsible use of AI in your applications and do not use AI in a way that can violate the
law or the privacy of the people.

https://www.microsoft.com/en-us/ai/principles-and-approach

14

When setting up Azure AI services in the Azure Portal, for some of the services (such as
Computer Vision) you will be asked to accept a notice of responsible use of AI so that you take
responsibility for the use you make of Microsoft services.

Azure AI Search

Azure AI Search is a cloud-based search service that adds AI-driven search capabilities to your
applications. It combines powerful indexing, natural language processing, and AI enrichment
capabilities to provide relevant and personalized search results. It provides indexing to extract
insights from unstructured content, such as identifying key phrases, language detection, and
sentiment analysis. It also offers full control over the ranking, filtering, and faceting of search
results; and it implements semantic search capabilities to understand user intent and context.
This allows for more accurate and nuanced search results, similar to web search engines.
Chapter 3 discusses this service and provides examples that will help you get started.

Azure AI Language services

Language services use natural language processing (NLP) to implement conversational user
interfaces, so that users can interact with applications in the same way they would do with other
people. Language services include the following:

• Language Understanding (LUIS): Builds NLP models to understand user intentions.

• Text analytics: Extracts insights from text, such as sentiment analysis, key phrase
extraction, and entity recognition.

• Translator: Provides machine translation services for multiple languages.

• QnA Maker: Creates a question-and-answer layer over your data, such as FAQs or
manuals.

The Language understanding (LUIS) and QnA Maker are very complex services, and vast
topics that cannot be summarized with a few paragraphs here. For this reason, this ebook only
covers the Text Analytics and Translator services in Chapter 4.

Azure AI Document Intelligence

Azure AI Document Intelligence services (formerly known as Form Recognizer) use AI to
automate data extraction from documents, such as forms, invoices, receipts, and contracts.
These services can process both structured and unstructured data, transforming documents into
usable data quickly and accurately. It features prebuilt models to extract key-value pairs easily
from common document types like invoices, receipts, and business cards.

In addition, it provides the possibility to create and train custom models to handle unique
document types or industry-specific forms. Finally, Document Intelligence services can
automatically extract and structure tables from documents and recognize and process
documents in multiple languages, making it suitable for global use cases.

Chapter 5 describes this service thoroughly and shows how to build an application that analyzes
invoices.

15

Azure AI Decision services

Azure AI Decision services allow for analyzing data and contents in order to provide
recommendations based on the criteria provided by developers. More specifically, the following
services are available:

• Personalizer: Delivers personalized user experiences by making recommendations.

• Content Safety: Automatically filters inappropriate content in text, images, and videos.

• Anomaly Detector: Detects anomalies in time-series data to identify potential problems
early.

Actually, Anomaly Detector and Personalizer are scheduled to be retired in late 2026, and it is
not possible to create new resources. Their successors have not been announced at the time of
writing. For these reasons, they will not be covered here; instead, we will cover the Content
Safety service in Chapter 6.

Azure AI Translator

Azure AI Translator is a cloud-based machine translation service that supports real-time
language translation for more than 100 languages. It enables businesses and developers to
translate text, documents, or even entire websites, providing localized content and fostering
better communication. It features instantaneous translation for text, documents, and speech,
and it allows translating entire documents while preserving the original format, such as Word,
PDF, and PowerPoint.

In addition, it is also possible to create custom translators to fine-tune translation models with
domain-specific data to improve accuracy and relevance. Chapter 7 provides detailed
information on this service, and it explains how to translate both text and formatted documents,
leveraging other Azure services, such as the Blob Storage.

Azure AI Speech services

Azure AI Speech services allow us to work with spoken text and language translation. The
following services are included:

• Speech-to-Text: Converts speech into text in real-time.

• Text-to-Speech: Synthesizes speech from text, with customizable voices.

• Speech Translation: Provides real-time speech translation.

• Speaker Recognition: Identifies and authenticates speakers based on their voice.

Chapter 8 provides detailed explanations and code examples for each feature.

Azure AI Computer Vision

Azure AI Computer Vision services allow for image, video, and form analysis. More specifically:

16

• Computer Vision: Provides tools for image analysis, including object detection, text
recognition (OCR), and content moderation.

• Face API: Detects and recognizes human faces, along with facial attributes such as
emotions, age, and gender.

• Custom Vision: Allows developers to create their own image classification models.

Custom Vision is actually another vast topic, and it is not possible to cover it in detail in this
ebook. If you want to create custom vision models, refer to the official documentation. Due to
the Face API’s ability to identify biometric human characteristics, Microsoft decided to open it
only to customers and organizations that submit a registration form and comply with specific
legal requirements. All the necessary information for it can be found on the Limited Access to
Face API page.

As a consequence, this ebook will only describe the source code to implement Face API, but no
image will be analyzed. In summary, Chapter 9 describes Computer Vision in detail, but code
examples only relate to image analysis and OCR.

Other AI services

The Azure AI services suite includes additional services that will not be covered in this ebook for
different reasons explained later. The following paragraphs summarize the other available
services.

Azure OpenAI service

Azure OpenAI service offers access to advanced language models developed by OpenAI, such
as GPT (generative pretrained transformer) models. This service enables developers to
leverage state-of-the-art natural language understanding and generation capabilities for various
applications, including chatbots, content generation, summarization, and code completion.
These include GPT models, which allow the deployment of language models capable of
generating human-like text based on input prompts, used in a range of scenarios like writing,
summarization, and customer interaction.

 Note: Syncfusion has published a dedicated ebook about the OpenAI service, so
this will not be covered here.

Azure AI Bot service

The AI Bot service is the most recent update in the Microsoft Azure offering related to building
conversational applications. With this service, you can build chatbots that leverage the most
sophisticated Azure AI-driven technologies. This service is quite complex, and it is not possible
to summarize its opportunities in one chapter. For this reason, it is not discussed in this ebook.

https://azure.microsoft.com/en-us/products/ai-services/ai-custom-vision
https://learn.microsoft.com/en-us/legal/cognitive-services/computer-vision/limited-access-identity
https://learn.microsoft.com/en-us/legal/cognitive-services/computer-vision/limited-access-identity
https://azure.microsoft.com/en-us/products/ai-services/openai-service
https://www.syncfusion.com/succinctly-free-ebooks/openai-succinctly
https://azure.microsoft.com/en-us/products/ai-services/ai-bot-service

17

Programming with Azure AI services

Azure AI services are exposed through RESTful APIs, so it is possible to send web requests
and receive a response over the HTTPS protocol. However, there are many convenient client
libraries on the market, developed to make it easier to work with Azure resources from various
development platforms and programming languages.

Developers working with Microsoft technologies can leverage the Azure SDK, a collection of
.NET libraries available via NuGet that allow for interacting with all the Azure cloud services via
.NET and managed code.

In this ebook, you will work with C#, .NET, and the Azure SDK to interact with the Microsoft
Azure AI services. The appropriate libraries from the Azure SDK will be mentioned as required.
In the next chapter, you will instead set up your development environment to have all the
necessary common .NET tools.

Chapter summary

Azure AI services provide a robust suite of AI-driven tools that enable developers to integrate
sophisticated intelligence into their applications. By leveraging these services, businesses can
enhance their capabilities in global communication, intelligent search, automated data
processing, natural language understanding, computer vision, and content moderation. These
services streamline workflows, reduce operational complexity, and allow for the seamless
integration of AI into various business processes, from customer support and document
management to content safety and localization.

Before writing code to fully understand the potential, you need to set up your development
environment. This is discussed in the next chapter.

18

Chapter 2 Setting Up the Development
Environment

This chapter explains how to set up the development environment to build .NET applications
that use Microsoft Azure AI services, regardless of the computer type and operating system you
use. In fact, .NET runs on Windows, macOS, and Linux systems, so the steps described in this
chapter apply to all systems. Figures in the ebook are based on Windows, but you will get the
same results on other operating systems.

 Note: If you work with Microsoft Visual Studio 2022 on Windows and prefer to use
this environment rather than VS Code, you are totally free to do so. The choice of
Visual Studio Code in this ebook aims to reach the widest audience possible.

Registering for an Azure subscription

To set up a development environment for Microsoft Azure AI services using Visual Studio Code,
the first requirement is having a Microsoft Azure subscription. If you do not have one, you can
register for a 30-day trial. You will need to register using a Microsoft account.

Complete the registration process by providing your details, verifying your identity with a credit
card (you will not be charged unless you upgrade your subscription), and accepting the terms.
Once you register, you will receive $200 in free credit, which can be used for various Azure
services, including Azure AI services. This is a perfect start to walk through the examples
described in this ebook. If you create a free Azure subscription for the purposes of following
along in this ebook, it’s relatively easy to cancel the subscription.

For now, nothing else is required on the Azure platform. All the required configurations and
service generations through the Azure Portal user interface will be discussed where appropriate
in the next chapters.

Locating the Azure AI services

Once you have created an Azure subscription, you need to log in to the Azure Portal, which is
the place where you manage all the available Azure services, not just AI services. The main
page of the Azure Portal is a dashboard where you find shortcuts to the most popular Azure
services. You will find a shortcut called AI Services. If you click on this shortcut, you will access
a page that contains the full list of available Azure AI services, as shown in Figure 1.

https://azure.microsoft.com/en-us/pricing/purchase-options/azure-account
https://learn.microsoft.com/en-us/azure/cost-management-billing/manage/cancel-azure-subscription
https://portal.azure.com/

19

Figure 1: Full list of Azure AI Services

In the next chapters, you will be asked to create new service instances for the AI service
targeted by each chapter. Keep Figure 1 as a reference to find the discussed service quickly
and remember that you can access this page by clicking AI Services in the Azure Portal home
page.

Creating a resource group

As the name implies, an Azure resource group is a container for cloud services. It provisions all
the resources common to the services it contains. A resource group is also needed to complete
the code examples discussed in this ebook.

To accomplish this, once you have logged in to the Azure Portal, type Resource Group in the
search bar and click the Resource Groups item that appears. This will open the Resource
groups page, as shown in Figure 2.

https://portal.azure.com/

20

Figure 2: Locating resource groups

Next, click Create. In the Create a resource group page, select your Azure subscription, then
enter a name for the resource group, such as aiservicessuccinctly, keeping the name
lowercase.

 Note: Every time you specify a name for an Azure resource, it must be lowercase.
Optionally, you can append the -rg literal to the resource group names to distinguish
them from other Azure resources.

Figure 3 demonstrates this.

21

Figure 3: Creating a resource group

In the Region dropdown, select the closest region to your location. When ready, click Review +
Create > Create, and wait for the resource group to be deployed.

 Note: To avoid extra costs or credit consumption, remember to completely delete
the Azure resources that you no longer use.

Installing .NET and .NET SDK

 Note: If you have already installed .NET 8 on your machine, you can skip this
step.

In Chapter 1, you learned that Azure AI services are available as RESTful APIs and that
Microsoft provides the Azure SDK to work against such services with convenient .NET client
libraries. The goal of this ebook is leveraging the Azure AI services in C# and .NET, so before
taking advantage of the Azure SDK, you need to set up your development machine to have all
the necessary .NET tools.

The next step is installing the latest stable release of .NET and the .NET software development
kit (SDK) on your development machine. The SDK also includes the .NET command line
interface (CLI), which is required to launch command lines from a command prompt. At the time
of writing this, the current stable release is .NET 8. You can download the installer from the
official download page, obviously making sure you select the installer that targets your system.

https://dotnet.microsoft.com/en-us/download/dotnet

22

Launch the installer and follow the on-screen instructions. When the installation is complete, you
can open a command prompt (or Terminal, on macOS and Linux) and type the following
command line:

> dotnet --version

If the installation was successful, this line will display the current .NET version number.

Installing and configuring Visual Studio Code

Visual Studio Code (often shortened to VS Code or Code) is a very popular, open-source,
cross-platform evolved code editor that works well with Azure services, as well as with others. If
you have not installed VS Code already, go to the official download page and download the
appropriate installer for your operating system (Windows, macOS, or Linux). Launch the
installer and follow the on-screen instructions. When you’re ready, launch VS Code.

 Note: It is not possible to summarize all the powerful features of Visual Studio
Code in this publication, which has a different focus. For this reason, we’ll only
discuss the features that are required to set up the environment and understand the
examples. For further information, you can read Visual Studio Code Succinctly.

The final step is installing an extension for Visual Studio Code called C# DevKit, which extends
the development environment with a rich C# development experience and a debugger for .NET.
Open the Extensions view, and search for the C# DevKit extension, as shown in Figure 4.

Figure 4: Installing the C# DevKit extension for VS Code

Click Install and close the Extensions view when you’re ready.

https://code.visualstudio.com/
https://www.syncfusion.com/succinctly-free-ebooks/visual-studio-code-succinctly
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit

23

 Note: Microsoft has published many Visual Studio Code extensions that make it
easier to work against Azure resources from within the development environment.
However, these extensions do not currently target Azure AI services, which is why we
aren’t discussing them here.

Additional configuration

The last step of your local configuration involves creating a new folder that will contain all the
code examples. If you want to be consistent with this ebook, you can name the folder
AIServices, but you are free to choose a different name. Using a command prompt or a
Terminal instance in VS Code, you can simply create the new folder as follows:

> md c:\AIServices

Now you are ready to start writing intelligent apps with .NET.

Creating applications with the .NET CLI

The .NET command line interface (CLI) provides a system-agnostic way to create and manage
.NET applications. In the next chapters, you will create two types of .NET apps: console apps
and WPF apps. The following command line generates a new C# project for a console app:

> dotnet new console

The generated project takes the name from the current folder. The following command line,
instead, generates a new C# project for a WPF app:

> dotnet new wpf

 Note: When you create a C# project with the .NET command line, the tool also
generates a Visual Studio solution (.sln) file whose name consists of the project
name, plus the .generated literal. This allows you to also open the project in Visual
Studio 2022. If you instead work with VS 2022, the solution name and main project
name are the same.

The steps you will follow to create sample projects are the following:

1. Create a new subfolder for the new project inside the AIServices folder created
previously.

2. Make the new subfolder the current folder.
3. Generate a new project.
4. Install the necessary libraries from the Azure SDK in the form of NuGet packages.

24

For example, the following sequence of commands is used in Chapter 3 to create a sample
WPF project:

> md c:\AIServices\AppSearchWpfApp
> cd c:\AIServices\AppSearchWpfApp
> dotnet new wpf
> dotnet add package Azure.Search.Documents
> dotnet add package Newtonsoft.Json

The dotnet add package command is used to install NuGet packages in the project. More

specifically, the command installs the latest version available. If you need to install a specific
version, you can use the following command:

> dotnet add package PackageName -v 1.0.0

PackageName is the name of the NuGet package, and 1.0.0 will be replaced with the version

number you need.

Opening projects in Visual Studio Code

Once you have created a project, open Visual Studio Code and then select File > Open Folder
or click Open Folder in the Start page. Select the folder that contains the project you just
created and wait for it to be available in VS Code.

Remember that VS Code is folder-based, not project-based. So, you do not open a C# project
file (.csproj) or Visual Studio solution file (.sln) directly; instead, you open the folder that contains
the project. Visual Studio Code will then set up the environment accordingly. We’ll cover more
details later in this book.

Common errors and exceptions

When you work with Azure AI services from .NET, you can receive exceptions and error
messages if something goes wrong. Some exceptions are common to all the services, and
others are specific. Table 1 describes exceptions that are common to all the services.

Table 1: Common AI Services .NET exceptions

AuthenticationFailedException

This occurs when the provided API keys
or tokens are invalid, expired, or
missing. The service will not be able to
authenticate your request, and you'll
receive this error in response.

25

ServiceRequestException

This occurs when there’s an issue with
the request to the Azure service, such
as malformed payloads or incorrect
endpoint usage. It's a general exception
thrown for request validation errors.

RequestFailedException

This is a general exception class used
across Azure SDKs when a request to
the server fails for any reason (e.g.,
network failure, server issues, or client
misconfiguration).

TimeoutException

If the service takes too long to respond
or the network request times out, this
exception is thrown. This can be caused
by network issues or server-side delays.

You can surround the code that interacts with Azure AI services with a try..catch block and

catch and handle the most appropriate exceptions. Other exceptions that are specific to each
service will be discussed where appropriate.

Chapter summary

In this chapter, you have seen how to configure the development environment to work with
.NET, Visual Studio Code, and the Microsoft Azure AI services. On the Azure side, you have
seen how to access the Azure Portal, where to locate the Azure AI services, and how to create
resource groups. On the desktop side, you have seen how to set up Visual Studio Code as the
development environment and how to leverage the .NET CLI to create Console and WPF
applications.

Now you have everything you need, and you are ready to start building intelligent applications.

26

Chapter 3 Azure AI Search

The Microsoft Azure AI Search is a cloud-based search service with built-in AI capabilities that
enrich the information retrieval experience. AI Search goes beyond traditional keyword-based
search by integrating cognitive skills, such as natural language processing, image recognition,
and machine learning, to provide more intelligent and context-aware search results. This
chapter discusses AI Search in a way that makes it easier to understand its purpose.

Introducing Azure AI Search

Microsoft Azure AI Search is a cloud-based search service that integrates AI capabilities to offer
advanced search features. It provides an enriched search experience by combining traditional
full-text searching with advanced natural language processing (NLP), cognitive skills, and
machine learning models. Azure AI Search can be used to develop custom search solutions that
offer users accurate, fast, and meaningful search results across various data types such as
structured data, unstructured text, and media files.

Azure AI Search is particularly useful for organizations that need to search large datasets
efficiently. It can be employed in scenarios such as enterprise search, e-commerce, catalog
search, document discovery, and knowledge management. It is built on the foundation of
modern search technology, powered by Elasticsearch, and enhanced with Microsoft's
proprietary AI services to make sense of complex datasets.

Azure AI Search is a fully managed service, which means it abstracts the complexities of setting
up, maintaining, and scaling search infrastructure. The core functionality of Azure AI Search
revolves around indexing, querying, and refining data to make it searchable in a way that aligns
with user intent. Key features include:

• Search indexing: Indexes can be created from multiple data sources such as Azure
SQL Database, Cosmos DB, Blob Storage, and custom data sources. During the
indexing process, data is transformed and enriched using AI capabilities, such as
language detection, image analysis, and entity recognition.

• Search queries: The service supports powerful query syntax that allows for full-text
search, filtering, faceting, and sorting. It also provides suggesters and autocomplete
features to improve the search experience.

• Cognitive skills: Through integration with other Azure AI services, you can enrich
search indexes with insights extracted from raw content, such as detecting named
entities, sentiment analysis, image extraction, key phrases, and more. These are known
as cognitive skills, which are applied to the data during the indexing process.

• Security and scalability: The service supports enterprise-grade security with Azure
Active Directory (Azure AD) integration, role-based access control (RBAC), and
encryption of data at rest and in transit. It is also highly scalable, allowing you to adjust
resources based on your search workload.

Azure AI Search includes several subservices and components that work together to enable
comprehensive search capabilities:

27

• Indexers automate the process of ingesting data from various sources into the search
index. Indexers can connect to multiple Azure data sources like Azure SQL Database,
Cosmos DB, and Blob Storage, or they can use a custom data source. You can
schedule indexers to update the search index periodically as the underlying data
changes. During the indexing process, AI enrichment can be applied via cognitive skills.

• Cognitive skills allow you to enrich your data using various AI services. These skills
range from text analysis, image recognition, and entity extraction to more advanced
tasks such as document translation. These skills are applied to documents or text as
they are indexed, transforming raw content into searchable and insightful information.

• Synonym maps allow you to define lists of equivalent terms for search queries. For
example, car and automobile can be treated as synonyms.

• Analyzers determine how data is tokenized and processed during indexing and
querying. They support different languages and customizations, helping to improve
search relevance.

• Search units are the scalable compute resources of Azure AI Search. Based on your
workload and performance requirements, you can scale search units up or down. Search
units handle query processing, indexing, and storage operations. They ensure that the
service can accommodate large volumes of data and provide rapid query responses.

Each of these components works together to build a sophisticated search solution that can
handle complex search scenarios with ease.

Creating a sample application

You will now create a Windows Presentation Foundation (WPF) application that allows users to
search a dataset using Azure AI Search. The app will interact with a locally created dataset (a
JSON file) that simulates an e-commerce product catalog. The purpose of this example is to
demonstrate how to query the Azure AI Search service, retrieve results, and display them in the
app. You will also see how to implement faceted search, filtering, and autocomplete.

Generally speaking, creating applications that work against Azure AI services first requires
generating the appropriate cloud resources in the Azure Portal. You will repeat almost the same
steps through all the next chapters, just targeting different services, so it is important that you
follow the next steps with particular attention.

 Note: Most of the examples in this ebook are represented by WPF applications.
This allows for implementing a convenient user interface that simplifies the
management of data and files, making it more interactive compared to Console apps.

Creating the Azure resources

Before writing code, you need to set up the necessary Azure resources, which include an
instance of the Azure AI Search service and a search index. Since this is the first time you will
create an instance of an AI service, the required steps will be explained in more detail. In the
next chapters, they will be summarized, and only the service name will be highlighted.

28

Once you’re logged into the Azure Portal, you will see the Azure dashboard, as shown in Figure
5.

Figure 5: The dashboard of the Azure Portal

At this point, click AI Services. This will open the full list of available Azure AI services,
including those not discussed in this ebook (see Figure 6).

Figure 6: Accessing the list of Azure AI services

Locate the AI Search service (in Figure 6 it is at the top-right corner) and click Create inside its
card. On the Create a search service page (see Figure 7), select your subscription and the
resource group created previously.

https://portal.azure.com/

29

Figure 7: Creating a search service

In the Service name text box, enter a unique identifier for your service, such as search-
succinctly. In the Location dropdown, select the region that is closest to you to avoid network
latency. Finally, in the Pricing tier dropdown, select the Free plan (F0).

When ready, click Review + Create, and on the summary page, click Create. The service will
now be created and deployed. You can adjust the service settings before creating it, but this will
not be covered here. Once the deployment is complete, a confirmation page appears (see
Figure 8).

Figure 8: Deployment completion for the AI Search service

Click Go to resource. This will open the main page for the new service, as shown in Figure 9.

30

Figure 9: The main page of the AI Search service

In Figure 9, you can see that the URL has been highlighted in red. Take note of the service
URL; it represents the access point to the service, and it will be required shortly in the source
code. The other relevant information you need is the API key, which is required for
authenticating against the service. Click the Keys menu item located at the left of the page to
open the Keys page (see Figure 10).

Figure 10: Managing API keys

By default, Azure generates two API keys, primary and secondary, but for development, you
only need one. They are hidden by default for security reasons. Click the Copy button close to
the primary API key text box and securely store the API key for later use in the source code.

 Tip: For each Azure AI service discussed in the next chapters, these are the
common steps that you will need to perform.

31

With Azure AI Search, you need to perform an additional step, which is configuring indexes.

Creating an index

Creating indexes is a crucial step in configuring Azure AI Search, as indexes determine how
your data will be stored, searched, and retrieved. In Azure AI Search, an index is a collection of
fields, each representing a piece of information within your searchable documents, such as
titles, descriptions, or metadata. Each field has specific attributes, such as whether it is
searchable, filterable, sortable, or facetable (allows users to refine a search).

The index that you will create in the next step relates to a collection of products, and each
product is mapped to the following C# class:

 public class Product
 {
 public string Id { get; set; }
 public string ProductName { get; set; }
 public string Category { get; set; }
 public double Price { get; set; }
 }

When you create an index in Azure, you will need to map every property of your data objects to
a field of the index. A practical example will clarify your doubts. In the left-hand menu of your
search service’s overview page, click the Indexes item, located under the Search management
node. This is where you can view existing indexes or create new ones.

To create a new index, click Add Index at the top of the indexes page. Make sure you select
the Add index option, since Add index (JSON) requires writing indexes in JSON format. This
will open the index creation page, where you can define the structure and attributes of your
index (see Figure 11).

Figure 11: The index creation page

32

Here you have to define the index properties:

• Index Name: A unique name for your index. This name will be used to reference the
index in your queries, API calls, and C# code.

• Fields: The fields you define will represent the schema of your data within the index.
Each field corresponds to a specific property or piece of information in your documents
(considering the Product class: ProductName, Category, Price for an e-commerce

index).

Click Add field to start adding fields. At this point, you will enter into edit mode for a new field.
Figure 12 shows an example based on the ProductName field.

Figure 12: Editing an index field

The first detail you set is the Field Name, which represents the name of the field as it will appear
in your index. Then, you set the data type (Type box): the appropriate data type for each field,
such as Edm.String for text, Edm.Int32 for integers, Edm.Double for floating-point numbers, or

Edm.DateTimeOffset for dates. Edm stands for entity data model.

For collections, you can select a collection type such as Collection(Edm.String). You can

also assign one or more of the following attributes:

• Searchable: Determines whether the field's content can be searched. Typically, you

would enable this for text fields like ProductName or Description.

• Filterable: Allows filtering on the field’s content. For example, you might want to filter

products by Category or Price.

• Sortable: Allows the results to be sorted based on this field, which is useful for fields

like Price.

• Facetable: Enables faceting, which is useful for generating search facets or categories

based on the values in this field, such as showing the number of products by category or
price range.

Notice that one field must be designated as the key field, which serves as the unique identifier
for documents in your index. By default, Azure generates a field called id. Every time you add

and assign a field, click the Save button. Repeat the steps to add fields for the Category and

Price properties, to be set with Edm.String and Edm.Double, respectively.

33

When you’re finished, click Save on the index page. Indexes are very flexible and allow for
implementing complex operations, which are beyond the scope of this ebook. For further
information, you can read the official Azure documentation about indexes.

Now you are ready to write code.

Creating a WPF application

To create a WPF application, open Visual Studio Code and open an instance of the Terminal by
selecting Terminal > New Terminal. When the Terminal is ready, type the following
commands:

> md c:\AIServices\AppSearchWpfApp
> cd c:\AIServices\AppSearchWpfApp
> dotnet new wpf
> dotnet add package Azure.Search.Documents
> dotnet add package Newtonsoft.Json

The following is a description of the aforementioned commands:

• The md command creates a new subfolder for a new app called AppSearchWpfApp

inside the AIServices folder created in Chapter 2.

• The cd command sets the new folder as the current folder.

• The dotnet new wpf command creates a new WPF project, whose name is the same

as the containing folder.

• The first dotnet add package command installs the Azure.Search.Documents NuGet

package, a library from the Azure SDK that allows for interacting with the AI Search
service from .NET code. The command line installs the Newtonsoft.Json library, probably
the most popular for JSON manipulation, required to manage sample JSON data.

When you’re ready, open the project in Visual Studio Code. Remember that VS Code is folder-
based, not project-based, so you have to select File > Open Folder and open the
AppSearchWpfApp folder created previously.

In the Explorer view, you will see the full project structure, as shown in Figure 13.

https://learn.microsoft.com/en-us/azure/search/search-what-is-an-index

34

Figure 13: The new project opened in VS Code

Click the New File button on the toolbar available on the line of the project name. A new file is
added, so rename it data.json.

In real-world scenarios, the data you process is originated from a database or from an API
service, but for demonstration purposes, you will create a JSON file containing a list of products
that matches the Product class shown previously. The following is the content of the JSON file

that you need to add:

[
 {
 "Id": "1",
 "ProductName": "Laptop",
 "Category": "Electronics",
 "Price": 999.99
 },
 {
 "Id": "2",
 "ProductName": "Smartphone",
 "Category": "Electronics",
 "Price": 699.99
 },
 {
 "Id": "3",
 "ProductName": "Desk Chair",
 "Category": "Furniture",
 "Price": 149.99
 }
]

35

It is also a good idea to work with a small JSON file, because the data must be sent to the
Azure AI Search service in order to be processed, and the Free pricing tier only offers 50Mb.
Now that you have a project and some data, it is time to write code.

Defining the user interface

The user interface of the sample app must include a search box, a button that launches
searches, and a ListView that displays the search result in the form of a collection of products.

In the MainPage.xaml file, add the code shown in Code Listing 1.

Code Listing 1

<Window x:Class="AzureSearchWpfApp.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
 xmlns:local="clr-namespace:AzureSearchWpfApp"
 mc:Ignorable="d"
 Title="MainWindow" Height="450" Width="800" Loaded="Window_Loaded">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition />
 </Grid.RowDefinitions>
 <StackPanel Orientation="Horizontal">
 <TextBox x:Name="SearchBox"
 Width="300" Height="30"
 VerticalAlignment="Top" Margin="10" />
 <Button x:Name="SearchButton" Content="Search"
 Margin="10" Click="SearchButton_Click" />
 </StackPanel>
 <ListView x:Name="ResultsList"
 Margin="10,10,10,10" Grid.Row="1">
 <ListView.View>
 <GridView>
 <GridViewColumn Header="Product Name"
 DisplayMemberBinding="{Binding ProductName}"
 Width="200"/>
 <GridViewColumn Header="Category"
 DisplayMemberBinding="{Binding Category}"
 Width="100"/>
 <GridViewColumn Header="Price"
 DisplayMemberBinding="{Binding Price}"
 Width="100"/>
 </GridView>
 </ListView.View>

36

 </ListView>
 </Grid>
</Window>

Notice how each GridViewColumn object in the ListView is bound to a property of each

Product instance in the retrieved collection. Now it is time to write the C# code that performs

searching and generates the search result.

Performing intelligent search in C#

The C# code needs to read the content of the data.json file, upload it to the Azure AI Search
service for indexing, and query the data based on the specified search terms. This is
accomplished with the code shown in Code Listing 2 (comments will follow shortly).

Code Listing 2

using Azure;
using Azure.Search.Documents;
using Newtonsoft.Json;
using System.Collections.ObjectModel;
using System.IO;
using System.Windows;

namespace AzureSearchWpfApp
{
 public partial class MainWindow : Window
 {
 private SearchClient searchClient;
 private ObservableCollection<Product> _products;
 private ObservableCollection<Product> Products
 {
 get { return _products; }
 set { _products = value; }
 }

 public MainWindow()
 {
 InitializeComponent();
 InitializeSearchClient();
 Products = new ObservableCollection<Product>();
 }

 private void InitializeSearchClient()
 {
 string serviceEndpoint =
 "your-endpoint-here";
 string indexName = "main";

37

 string apiKey =
 "your-api-key";

 var credential = new AzureKeyCredential(apiKey);
 searchClient = new SearchClient(
 new Uri(serviceEndpoint), indexName, credential);
 }

 private async Task PerformSearch(string query)
 {
 try
 {
 var options = new SearchOptions
 {
 IncludeTotalCount = true
 };
 var response = await searchClient.
 SearchAsync<Product>(query, options);
 Products.Clear();
 var result = response.Value.GetResults();
 foreach (var item in result)
 {
 Products.Add(item.Document);
 }
 ResultsList.ItemsSource = Products;
 }
 catch (Exception ex)
 {
 MessageBox.Show($"Error performing search: {ex.Message}");
 }
 }

 private async Task LoadDataAsync()
 {
 // Read the JSON file.
 string jsonData = File.ReadAllText("data.json");
 var products = JsonConvert.
 DeserializeObject<List<Product>>(jsonData);

 // Upload data to Azure AI Search index.
 await UploadDataToIndex(products);
 }

 private async Task UploadDataToIndex(List<Product> products)
 {
 try
 {
 // Upload the documents to the search index.
 await searchClient.UploadDocumentsAsync(products);

38

 MessageBox.
 Show("Data successfully uploaded to Azure Search.");
 }
 catch (Exception ex)
 {
 MessageBox.Show($"Error uploading data to Azure Search: " +
 $"{ex.Message}");
 }
 }

 private async void Window_Loaded(object sender,
 RoutedEventArgs e)
 {
 await LoadDataAsync();
 }

 private async void SearchButton_Click(object sender,
 RoutedEventArgs e)
 {
 string query = SearchBox.Text;
 if (!string.IsNullOrWhiteSpace(query))
 {
 await PerformSearch(query);
 }
 }
 }

}

The Azure SDK is central to this application, enabling interaction with the search service hosted
in Azure. The following is an explanation about the .NET objects and members that are relevant
for AI Search:

• The SearchClient class provides a way to interact with a specific search index in Azure

AI Search. It allows performing search queries and managing documents within that
index. The SearchClient object is instantiated with the service endpoint (Uri), index

name (string), and AzureKeyCredential for authentication. In the code, the

UploadDocumentsAsync<T> method is used to asynchronously upload a batch of

documents (in this case, Product objects) to the index.

• This method returns a Response<IndexDocumentsResult> object, which contains

information about the indexing operation. The SearchAsync<T> method is used to

execute search queries asynchronously, returning a SearchResults<T> object

containing the search results. Additionally, methods like MergeDocumentsAsync<T> and

DeleteDocumentsAsync<T> allow updating and removing documents from the index,

respectively, and could be useful for scenarios where you need to modify or delete
indexed data.

39

• The SearchIndexClient class enables you to manage the structure of your search

indexes. Although it is not heavily used in the code, this client is essential for creating,
updating, or deleting indexes. The client is instantiated similarly to SearchClient with

the service endpoint and AzureKeyCredential. The CreateIndexAsync method can

be used to create a new search index programmatically, while DeleteIndexAsync

allows for deleting an existing index. The GetIndexAsync method retrieves the schema

of an index, which can be useful for inspecting or modifying the structure.

• The SearchOptions class configures the behavior of search queries performed with the

SearchClient. In the code, SearchOptions is used to specify that the total count of

results should be included in the search response (IncludeTotalCount = true). Other

available properties include Filter, which can be used to apply filters to the search

query, and Facets, which allows you to specify fields for faceted navigation. Additionally,

OrderBy can be set to control the sort order of the search results.

• The SearchResults<T> class represents the collection of search results returned by the

SearchAsync<T> method. It includes properties such as TotalCount, which gives the

total number of documents that match the search query, and Results, which contains a

collection of SearchResult<T> objects. The GetResults method can be used to

retrieve the collection of individual search results. This class encapsulates not only the
results themselves, but also metadata about the query, which can be useful for building
pagination or providing more detailed insights into search performance.

• The SearchResult<T> class represents an individual document retrieved from the

search index. Each SearchResult object includes properties like Score, which

represents the relevance score assigned by the search engine, and Highlights, which

contains the highlighted portions of the document that match the query, if highlighting is
enabled. The Document property gives access to the actual document (in this case, a

Product object) stored in the index. The SearchResult<T> class also exposes methods

like GetDouble, GetString, and other type-specific accessors to retrieve individual

fields from the result when working with dynamic schemas.

• The IndexDocumentsResult object is returned by document indexing methods like

UploadDocumentsAsync<T> and MergeDocumentsAsync<T>. This object contains

information about the result of the indexing operation, such as the status and number of
documents successfully processed. It helps in verifying whether the documents were
indexed properly, and if there were any errors.

Errors and exceptions

If a search fails, the Azure AI services can throw the following exceptions:

• IndexNotFoundException: Thrown when trying to query a non-existent or incorrect
search index.

• InvalidSearchQueryException: This exception occurs when the search query syntax
is malformed or includes unsupported features.

You can implement a try..catch block for exception handling and take the appropriate

actions.

40

Running the application

Start the application by pressing F5. The main window will first upload the JSON data to the
Index service of Azure AI Search, and then it will allow typing into the search box. The
application will send the queries to Azure AI Search, retrieve the results, and display them in the
ListView. Figure 14 shows an example.

Figure 14: The application is ready to leverage Azure AI Search

This is obviously a simple example, but it should at least give you an idea of Azure AI Search’s
powerful features.

Chapter summary

The Microsoft Azure AI Search service is a powerful, cloud-based search solution that combines
traditional full-text search capabilities with advanced AI features, such as cognitive skills and
machine learning models. Through this research, we explored how Azure AI Search can be set
up and utilized to build sophisticated search applications.

The provided code example demonstrated how to query a search index from a WPF application,
showcasing the integration of Azure AI Search into desktop applications. By leveraging the
Azure AI Search SDK, developers can create rich search experiences with minimal
infrastructure overhead.

41

Chapter 4 Azure AI Language

The Microsoft AI Language service focuses on natural language processing (NLP) and is
designed to analyze unstructured text and provide deep insights, such as language detection,
sentiment analysis, key phrase extraction, named entity recognition (NER), and text
summarization. This chapter describes this service in detail, providing code examples that target
all the language processing features.

Introducing Azure AI Language service

Azure AI Language specializes in the processing and understanding of human language, which
makes it an essential tool for businesses seeking to extract actionable insights from large
amounts of textual data. As companies accumulate vast amounts of unstructured text data, from
social media interactions, emails, surveys, and documents, the challenge becomes turning this
data into useful information. Azure AI Language allows businesses to automate and scale the
analysis of this data by leveraging advanced NLP models built on Microsoft's extensive
research in artificial intelligence. Azure AI Language offers several functionalities that cater to
different aspects of language processing:

• Sentiment Analysis: This feature analyzes the sentiment of text data, classifying it as
positive, neutral, or negative. This can be helpful in various scenarios, such as gauging
customer satisfaction from feedback or analyzing public sentiment about a product.

• Key Phrase Extraction: This feature extracts the most important phrases from a
document, highlighting the key concepts or ideas within the text. This can be particularly
useful for summarizing large documents or extracting main topics from customer
reviews.

• Named Entity Recognition (NER): NER identifies and classifies entities within text such
as people, organizations, locations, and dates. This is useful for data categorization and
enhancing search functionalities within applications.

• Language Detection: The service can automatically detect the language of the text
input, which is helpful when dealing with multilingual data sources.

• Text Summarization: This advanced feature provides an automated summary of the
content by distilling long documents into a concise summary that captures the essence
of the text.

• Text Translation: Azure AI Language can translate text from one language to another,
leveraging the same powerful models used in Microsoft Translator. This feature is
actually empowered by the Azure AI Translator service, which is discussed thoroughly in
Chapter 7.

The service is integrated into the Azure ecosystem, which allows seamless connection with
other Azure resources like Blob Storage, Azure Cognitive Search, and Power BI, enhancing its
capabilities in data-driven applications. Azure AI Language is designed to handle data privacy
and security, adhering to stringent compliance standards, including GDPR and ISO/IEC
certifications.

42

 Note: Text summarization might not be available in all Azure regions. Make sure
your region supports this feature when you create the AI Language service instance
in the Azure Portal.

Creating a sample application

In this example, you will create a WPF (Windows Presentation Foundation) application using
.NET that interacts with the Azure AI Language service to perform text analysis over a text file.
The application will allow users to select a file from their local machine, read its content, and
analyze text using Azure AI Language. The code example focuses on all the text analysis
features described previously, so it is a comprehensive example. As it normally happens for
Azure AI services, you will first set up the appropriate Azure resources, and then you will create
an application with Visual Studio Code.

 Tip: The companion code for this chapter ships with a text file that will be used for
the coming discussions. This text file describes the story of Microsoft Corp. in
English, and it has been generated with Azure OpenAI’s ChatGPT. It is written in a
way that all the NLP features can be demonstrated here. It also includes some
sentences in German to demonstrate the services’ ability to work over mixed
languages. Figures for the sample application are based on this text file.

Setting up the Azure AI Language resources

To set up the Azure AI Language service, sign into the Azure Portal with your Microsoft account.
Following the lesson learned in the previous chapter, click AI Services and locate the
Language service. At this point, follow these steps:

1. Click Create under the Language card.
2. When the creation page appears, choose your subscription and the resource group

created previously.
3. Provide a name for your Language resource (for example, language-service-

succinctly), choose a region, and select the Free price tier.
4. Click Review + create > Create.

After the resource is created and deployed, click Go to resource. From the left-hand menu,
select Keys and Endpoint. Copy the key and endpoint URL (either to the clipboard or to a text
editor), which you will need for authentication in your application.

https://portal.azure.com/

43

Creating a WPF sample project

The goal of the sample application is analyzing the text contained inside a .txt file, which is
included in the companion solution that you can use as a reference. The application will
leverage the Azure AI Language service to detect sentiment, extract key phrases and named
entities, detect language, and perform text summarization.

Open Visual Studio Code and then open a new Terminal window. Type the following, self-
explanatory commands:

> md \AIServices\TextAnalysisApp
> cd \AIServices\TextAnalysisApp
> dotnet new wpf
> dotnet add package Azure.AI.TextAnalytics

The Azure.AI.TextAnalytics NuGet package is the library from the Azure SDK that exposes all
the necessary objects you will use to interact with the Azure AI Language service. When you’re
ready, open the folder containing the new solution. The code will be now split into two parts: the
user interface, and the code that interacts with the AI Language service.

Designing the user interface

In WPF, the user interface is defined via the eXtensible Application Markup Language (XAML).
Code Listing 3 shows the definition of the user interface for the current sample application.
Comments will follow shortly.

Code Listing 3

<Window x:Class="textanalysisapp.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
 xmlns:local="clr-namespace:textanalysisapp"
 mc:Ignorable="d"
 Title="MainWindow" Height="450" Width="800">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto"/>
 </Grid.RowDefinitions>
 <Button Content="Open File" HorizontalAlignment="Left"
 VerticalAlignment="Top" Width="100"
 Margin="10,10,0,0" Click="OpenFileButton_Click"/>
 <TextBox Grid.Row="1" Name="FileContentTextBox"
 HorizontalAlignment="Left" Height="100"
 Margin="10,50,0,0" VerticalAlignment="Top" Width="560"

44

 TextWrapping="Wrap"/>
 <TextBlock Grid.Row="2" Name="ResultLabel" Height="150"
 TextWrapping="WrapWithOverflow"
 Text="Result:" HorizontalAlignment="Left"
 Margin="10,10,0,0" VerticalAlignment="Top"/>
 <StackPanel Grid.Row="3" Orientation="Horizontal"
 HorizontalAlignment="Left"
 VerticalAlignment="Top" Margin="10,10,0,0">
 <Button Content="Analyze Sentiment"
 Width="120" Click="AnalyzeSentimentButton_Click"/>
 <Button Content="Extract Key Phrases" Width="120"
 Margin="10,0,0,0" Click="ExtractKeyPhrasesButton_Click"/>
 <Button Content="Recognize Entities" Width="120"
 Margin="10,0,0,0"
 Click="RecognizeEntitiesButton_Click"/>
 <Button Content="Detect Language" Width="120" Margin="10,0,0,0"
 Click="DetectLanguageButton_Click"/>
 <Button Content="Summarize Text" Width="120" Margin="10,0,0,0"
 Click="SummarizeTextButton_Click"/>
 </StackPanel>
 </Grid>
</Window>

The user interface definition is very simple. At the top, there is a button that allows for loading a
text file. A TextBox shows the content of the text file, while a TextBlock displays the analysis

results. Finally, there are several button controls, one per analysis type. At this point, it is time to
implement natural language analysis in C#.

Natural language processing in C#

Natural language processing in C# with the Azure AI Language service can be performed using
the TextAnalyticsClient class and its members. Code Listing 4 shows the full

implementation, and individual code blocks will be discussed next.

Code Listing 4

using Azure;
using Azure.AI.TextAnalytics;
using Microsoft.Win32;
using System.IO;
using System.Windows;

namespace TextAnalysisApp;

/// <summary>
/// Interaction logic for MainWindow.xaml.
/// </summary>
public partial class MainWindow : Window

45

{
 private static readonly
 string endpoint =
 "your-endpoint";
 private static readonly
 string apiKey = "your-api-key";
 private readonly TextAnalyticsClient _client;

 public MainWindow()
 {
 InitializeComponent();
 var credentials =
 new AzureKeyCredential(apiKey);
 _client = new TextAnalyticsClient(
 new Uri(endpoint), credentials);
 }

 private void OpenFileButton_Click(object sender, RoutedEventArgs e)
 {
 OpenFileDialog openFileDialog = new OpenFileDialog();
 openFileDialog.Filter = "Text files (*.txt)|*.txt";
 if (openFileDialog.ShowDialog() == true)
 {
 string fileContent = File.ReadAllText(openFileDialog.FileName);
 FileContentTextBox.Text = fileContent;
 }
 }

 private async void AnalyzeSentimentButton_Click(object sender,
 RoutedEventArgs e)
 {
 string fileContent = FileContentTextBox.Text;
 if (!string.IsNullOrEmpty(fileContent))
 {
 DocumentSentiment sentiment =
 await _client.AnalyzeSentimentAsync(fileContent);
 ResultLabel.Text = $"Sentiment: {sentiment.Sentiment}";
 }
 }

 private async void ExtractKeyPhrasesButton_Click(object sender,
 RoutedEventArgs e)
 {
 string fileContent = FileContentTextBox.Text;
 if (!string.IsNullOrEmpty(fileContent))
 {
 KeyPhraseCollection keyPhrases =
 await _client.ExtractKeyPhrasesAsync(fileContent);
 ResultLabel.Text =

46

 $"Key Phrases: {string.Join(", ", keyPhrases)}";
 }
 }

 private async void RecognizeEntitiesButton_Click(object sender,
 RoutedEventArgs e)
 {
 string fileContent = FileContentTextBox.Text;
 if (!string.IsNullOrEmpty(fileContent))
 {
 CategorizedEntityCollection entities =
 await _client.RecognizeEntitiesAsync(fileContent);
 string entitiesResult = "";
 foreach (var entity in entities)
 {
 entitiesResult +=
 $"{entity.Text} ({entity.Category}), ";
 }
 ResultLabel.Text =
 $"Entities: {entitiesResult.TrimEnd(',', ' ')}";
 }
 }

 private async void DetectLanguageButton_Click(object sender,
 RoutedEventArgs e)
 {
 string fileContent = FileContentTextBox.Text;
 if (!string.IsNullOrEmpty(fileContent))
 {
 DetectedLanguage language =
 await _client.DetectLanguageAsync(fileContent);
 ResultLabel.Text =
 $"Detected Language: {language.Name}";
 }
 }

 private async void SummarizeTextButton_Click(object sender,
 RoutedEventArgs e)
 {
 string fileContent = FileContentTextBox.Text;

 if (!string.IsNullOrEmpty(fileContent))
 {
 try
 {
 // Start the text summarization operation and wait
 // until it completes.
 var summaryOperation =
 await _client.ExtractiveSummarizeAsync(

47

 WaitUntil.Completed,
 new List<string> { fileContent });

 // Initialize a string to store the summary.
 string summarizedText = "";

 // Process the results asynchronously.
 await foreach (var document in summaryOperation.Value)
 {
 var firstDocument = document.FirstOrDefault();

 if (firstDocument != null && !firstDocument.HasError)
 {
 foreach (var sentence in firstDocument.Sentences)
 {
 summarizedText += sentence.Text + " ";
 }
 }
 else
 {
 summarizedText =
 "An error occurred during text summarization.";
 }
 }

 // Display the summarized text in the UI.
 ResultLabel.Text = $"Summarized Text: {summarizedText}";
 }
 catch (Exception ex)
 {
 ResultLabel.Text = $"An error occurred: {ex.Message}";
 }
 }
 }
}

At the top of the code implementation, you need to initialize the endpoint and apiKey variables

with the service endpoint and API key that you previously stored from the Azure Portal.
Following is a list of relevant objects from the Azure SDK used in the code for Azure AI
Language:

• The TextAnalyticsClient client class is used for interacting with the Azure AI

Language service. It provides various methods to analyze text data, such as
ExtractiveSummarizeAsync to perform text summarization, AnalyzeSentimentAsync

to perform sentiment analysis on text data, RecognizeEntitiesAsync to retrieve

named entities, DetectLanguageAsync to detect the predominant language inside text,

and ExtractKeyPhrasesAsync to extract key phrases from text.

48

• The ExtractiveSummarizeOperation object is returned by the

ExtractiveSummarizeAsync method and represents the long-running summarization

operation. The Value property contains the summarization results, which can be iterated

over to access individual summarized documents. Additionally, methods like
WaitForCompletionAsync can be used to await the completion of the operation,

making it easier to manage asynchronous workflows.

• The ExtractiveSummarizeResultCollection holds the results of a text

summarization operation. Each result in the collection corresponds to one document that
was summarized. The Count property allows for iterating over the collection, and each

document result can be accessed through its index.

• The ExtractiveSummarizeResult class represents the summarized result of a single

document. It includes the Sentences property, which is a collection of

SummarySentence objects representing the sentences that make up the summary. The

HasError property indicates whether there was an error processing the document, and

the Id property identifies the document in the collection.

• The SummarySentence class represents a single sentence in a summarized document.

The Text property contains the actual text of the sentence, and the RankScore property

indicates the sentence's relevance within the document, with higher values indicating
greater importance. Other properties, like Offset and Length, provide information about

the position of the sentence within the original document.

• The DocumentSentiment object is returned by the AnalyzeSentimentAsync method

and represents the result of sentiment analysis. It contains the Sentiment property,

which indicates the overall sentiment of the text, and ConfidenceScores, which

provides confidence levels for each sentiment category (positive, neutral, and negative).

• The CategorizedEntityCollection collection is returned by the

RecognizeEntitiesAsync method. It contains categorized entities recognized in the

text, such as people, organizations, or locations. Each entity in the collection is
described by its category, subcategory, and confidence score, allowing for detailed entity
recognition and analysis.

• The DetectedLanguage object is returned by the DetectLanguageAsync method and

represents the detected language in a document. It includes the Name property, which

indicates the name of the detected language, and the ConfidenceScore property, which

shows the confidence level of the detection. This is useful for determining the primary
language of a document or set of documents in multilingual applications.

By combining these objects and methods, developers can extend their applications to include
various text analytics capabilities such as summarization, sentiment analysis, entity recognition,
key phrase extraction, and language detection using the Azure AI Language service. This
enables more comprehensive text processing in real-world applications.

49

Errors and exceptions

If language analysis fails, the Azure AI Language service can throw the following exceptions:

• InvalidDocumentException: Thrown when the document provided for analysis (e.g.,

for sentiment or text analytics) doesn’t meet format or content requirements.

• DocumentLimitExceededException: Thrown when the batch size exceeds the limit

allowed by the service for a single request.

Do not forget to implement a try..catch block as a best practice for exception handling.

Running the application

Press F5 to run the application. Click Open File and select a .txt file that contains some text
suitable for a full language analysis. The companion source code contains a file called text.txt
that you can use for simplicity; it’s the base for the next figures. The first analysis type is
sentiment analysis. Click the Analyze Sentiment button, and you will get the result shown in
Figure 15.

Figure 15: Analyzing the sentiment from the text

As you can see, the language analysis returned a positive sentiment. Now click Extract Key
Phrases. You will get the result shown in Figure 16.

50

Figure 16: Extracting key phrases

As you can see, the list is quite long, but you can quickly understand the work done by the
language analysis engine in collecting the relevant key phrases. Now, click Recognize Entities
to get the result shown in Figure 17.

Figure 17: Extracting named entities

As you can see, the analysis engine returns a long list of named entities detected in the text,
also specifying the type of entity (for example, person, quantity, DateTime). This is extremely
valuable because it allows you to filter entities by type.

Now, click Detect Language. If you look at Figure 18, you can see that the language detected
is English, even if there are some sentences in German. The reason is that the analysis engine
returns the prominent language.

51

Figure 18: Detecting languages

Finally, click Summarize Text. As you can see in Figure 19, the AI Language service returns a
summary of the original text.

Figure 19: Extracting text summaries

With extremely limited effort, you have been able to perform advanced text analysis taking
advantage of natural language processing.

52

Chapter summary

The Microsoft Azure AI Language service offers robust capabilities for processing and analyzing
unstructured text data, enabling businesses to extract meaningful insights. This service
integrates smoothly with applications using Azure SDKs, and by following the steps in this
chapter, developers can create powerful applications that leverage these AI capabilities.

The sample application demonstrated how to use the Azure AI Language service in a WPF
application, focusing on all the text analysis features for text files. By implementing this service,
businesses can automate text analysis workflows and gain insights into customer sentiment,
document summarization, and more, while benefiting from the scalability and security of Azure's
cloud infrastructure.

53

Chapter 5 Azure AI Document Intelligence

Microsoft Azure AI Document Intelligence is a specialized AI service that focuses on automating
the extraction, analysis, and processing of information from various document types. This
chapter describes the different features provided by this service, with code examples that will
help you work with forms and documents leveraging the power of AI.

Introducing Azure AI Document Intelligence

Azure AI Document Intelligence is designed to intelligently extract text, key-value pairs, tables,
and other structured information from documents like invoices, receipts, contracts, or any form
requiring data entry. Azure AI Document Intelligence leverages machine learning models to
identify and structure data, minimizing the need for manual intervention. It offers capabilities to
customize and train models specific to your business documents, allowing for improved
accuracy and adaptability. The service is especially useful in scenarios involving high volumes
of documents, where manual data entry can be time-consuming, expensive, and error-prone.

Azure AI Document Intelligence provides prebuilt and custom models to extract information from
structured, semistructured, and unstructured documents. These models are trained to
understand the format of specific documents, like invoices, identity cards, or business forms.
The service supports multiple languages and formats, including PDFs, scanned images, and
photographs. More specifically, it offers:

• Prebuilt models: Prebuilt models are designed to recognize and extract information
from common document types, such as receipts, invoices, and business cards. These
models are trained by Microsoft and can be used immediately without the need for
further training.

• Custom models: Custom models allow users to train AI models tailored to their specific
document layouts. Using labeled data, users can train models to recognize key-value
pairs and other structured information in documents that do not conform to standard
templates.

• General document model: This subservice extracts content and layout information from
any document without the need for training or labeling. It can handle a wide variety of
documents, extracting text, tables, and other data.

• Layout model: This is a base model used to extract document layout information,
including text, tables, selection marks, and the overall structure. It is often used as a
preprocessing step before further processing with other models.

Azure AI Document Intelligence exposes the aforementioned models through a number of
services, described in the next section.

54

Services of Azure AI Document Intelligence

In terms of AI services that you can use in your applications, Azure AI Document Intelligence
provides the following:

• Form Recognizer: Form Recognizer is the core component of Azure AI Document
Intelligence. It allows the extraction of information from forms, invoices, and other
documents through prebuilt or custom models. It can recognize fields, checkboxes,
signatures, and tables from scanned or digital documents. The form processing models
within Form Recognizer support various forms such as receipts, invoices, and business
cards.

• Invoice Recognizer: This is a specialized prebuilt model that extracts information from
invoices, including fields like invoice number, date, total amount, and due date. It helps
automate the processing of accounts payable by accurately extracting and categorizing
invoice data.

• Receipt Recognizer: The receipt recognizer model extracts information from sales
receipts, such as the transaction date, total amount, items purchased, and merchant
details. This model is useful in automating expense reporting and tracking.

• Business Card Recognizer: This prebuilt model extracts contact details from business
cards, including name, phone number, email address, and company name. It is
particularly useful for customer relationship management (CRM) systems to automate
the entry of new contacts.

• ID Document Recognizer: This model is used to extract key fields from identification
documents, such as driver’s licenses, passports, and ID cards. The fields it extracts
typically include name, date of birth, and document number.

Each of these subservices is built to handle specific document types and extract information in a
way that can be easily integrated into other business processes and workflows. In the next
sections, you will get some code examples about document analysis via Azure AI Document
Intelligence services.

Configuring the Azure resources

Before writing code, you need to set up the Azure AI Document Intelligence service on the
Azure Portal. This is going to be quite fast, since you will perform the same steps you did with
the previous services.

Once logged in, click AI Services. Locate the Document Intelligence service and click Create.
In the service creation page, select the resource group created previously and choose the
closest region to your location. Specify document-intelligence-succinctly as the service name
and select the Free pricing tier. Finally, click Review + Create > Create. As usual, retrieve and
store the service endpoint and API key for later use.

https://portal.azure.com/

55

Sample application: processing invoices

The goal of the example is showing how to create a WPF application in Visual Studio Code that
uses the Azure AI Document Intelligence service to process invoices. The application will allow
the user to select a local PDF file of an invoice and then extract key information, such as the
invoice number, total amount, and due date. The companion code contains a prebuilt PDF
document that you can use, with the following structure:

Invoice #: INV-1001
Invoice Date: August 25, 2024
Due Date: September 25, 2024
Bill To:
Alessandro Del Sole
123 Main St
Seattle, WA 98000
Item Description Amount

Website Development Services $1,500.00
Monthly Hosting (August 2024) $100.00

Total Amount Due: $1,600.00

This is more than enough to leverage the power of the AI Document Intelligence service.

 Tip: You can create your own invoice sample in Microsoft Word, using a similar
structure, and then save the document as PDF.

Following the lessons learned in the previous chapters, create a new WPF project in Visual
Studio Code called InvoiceProcessorApp. Make sure you install the Azure.AI.FormRecognizer
NuGet package, which is the library that allows for interacting with the AI Document Intelligence
service.

In summary, these are the command lines you need to run:

> md \AIServices\InvoiceProcessorApp
> cd \AIServices\InvoiceProcessorApp
> dotnet new wpf
> dotnet add package Azure.AI.FormRecognizer

When finished, open the new project in Visual Studio Code.

Defining the user interface

In the MainWindow.xaml file, add the code shown in Code Listing 5 to implement a simple UI
with a button that loads a PDF document, and a TextBlock that shows the results of the

document processing.

56

Code Listing 11

<Window x:Class="InvoiceProcessorApp.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
 xmlns:local="clr-namespace:InvoiceProcessorApp"
 mc:Ignorable="d"
 Title="MainWindow" Height="450" Width="800">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Button Name="BtnSelectFile" Content="Select Invoice"
 HorizontalAlignment="Left" VerticalAlignment="Top"
 Margin="10,10,10,0" Width="100" Height="30"
 Click="BtnSelectFile_Click"/>
 <TextBlock Grid.Row="1" Name="TxtInvoiceData"
 HorizontalAlignment="Left" VerticalAlignment="Top"
 Margin="10,10,10,0" Width="500" TextWrapping="Wrap" />
 </Grid>
</Window>

The next step is about adding the document processing logic to the C# code.

Document analysis in C#

When the application runs, the user can select a PDF invoice from the local file system using a
dialog. The application will then send the selected file to Azure AI Document Intelligence,
specifically using the prebuilt invoice model. Once the invoice is processed, the extracted
information, such as the invoice number, total amount due, and due date, will be displayed in
the text block within the WPF window.

To accomplish this, add the code shown in Code Listing 6 to the MainPage.xaml.cs file, with
comments following shortly.

Code Listing 6

using Azure;
using Azure.AI.FormRecognizer.DocumentAnalysis;
using Microsoft.Win32;
using System.IO;
using System.Windows;

namespace InvoiceProcessorApp

57

{
 public partial class MainWindow : Window
 {
 private readonly string
 endpoint = "your-endpoint";
 private readonly string
 apiKey = "your-api-key";

 public MainWindow()
 {
 InitializeComponent();
 }

 private async void BtnSelectFile_Click(object sender,
 RoutedEventArgs e)
 {
 OpenFileDialog openFileDialog = new OpenFileDialog();
 openFileDialog.Filter = "PDF files (*.pdf)|*.pdf";
 if (openFileDialog.ShowDialog() == true)
 {
 string filePath = openFileDialog.FileName;
 await ExtractInvoiceData(filePath);
 }
 }

 private async Task ExtractInvoiceData(string filePath)
 {
 var credential = new AzureKeyCredential(apiKey);
 var client = new DocumentAnalysisClient(new Uri(endpoint),
 credential);

 using var stream = new FileStream(filePath, FileMode.Open);
 AnalyzeDocumentOperation operation =
 await client.AnalyzeDocumentAsync(
 WaitUntil.Completed, "prebuilt-invoice", stream);

 AnalyzeResult result = operation.Value;

 string invoiceNumber =
 result.Documents[0].Fields["InvoiceId"].Content;
 string totalAmount =
 result.Documents[0].Fields["AmountDue"].Content;
 string dueDate =
 result.Documents[0].Fields["DueDate"].Content;

 TxtInvoiceData.Text =
 $"Invoice Number: {invoiceNumber}\nTotal Amount: " +
 $"{totalAmount}\nDue Date: {dueDate}";
 }

58

 }
}

The following is an explanation of .NET objects used in the code to interact with Azure AI
Document Intelligence:

• The DocumentAnalysisClient class is the core client used to interact with Azure AI

Document Intelligence. This class facilitates document analysis by enabling the
submission of documents to prebuilt models or custom models. In the current example,
the AnalyzeDocumentAsync method is invoked to analyze an invoice. Additionally, this

client provides other methods, like StartAnalysisAsync, for handling larger documents

in a more granular way. The constructor requires the service endpoint and an instance of
AzureKeyCredential to authenticate API requests.

• The AnalyzeDocumentOperation class represents an asynchronous operation that

processes documents using a specific model. In the sample code, it has been used to
handle the document analysis request, waiting for the operation to complete with await.
The AnalyzeDocumentOperation can be polled periodically for long-running document

processing tasks, which is particularly useful when working with documents that contain
multiple pages or complex layouts. While the code invoked AnalyzeDocumentAsync for

a straightforward analysis, other methods in this class, like GetDocumentResult, allow

for retrieving the analysis results directly, which can be useful when integrating with
workflows that need finer control over document processing.

• The AnalyzeResult object holds the result of a document analysis. It contains extracted

content, such as key-value pairs, tables, and text. The Documents property is of type

IReadOnlyList<AnalyzedDocument>, which represents the analyzed documents with

fields and their corresponding values. Besides basic extraction, the AnalyzeResult

class supports complex scenarios. For instance, if your document contains tables, you
can access them via the Tables property, which provides structured table data. The

Pages property also provides detailed information about the layout of each page, such

as lines of text, selection marks, and bounding boxes, making it easier to implement
custom rendering or export logic based on the extracted data.

• Each field extracted from the document is represented by the DocumentField class.

This class provides access to the field’s content, confidence score, and bounding box (if
available). In our example, we used the Content property to extract the recognized

values, such as invoice numbers and total amounts. Depending on the type of field, the
DocumentField class has several properties that provide strongly typed access to data,

such as ValueType, ValueString, ValueDate, and ValueCurrency. These specialized

properties allow for the type-safe extraction of data, reducing the need for manual
parsing and enhancing the reliability of the extracted information.

Notice how the Fields property requires specifying a conventional identifier that the AI service

can use to detect the various document parts quickly, such as InvoiceId, AmountDue, and

DueDate. This is based on the prebuilt invoice model (prebuilt-invoice), and the full list of

conventional identifiers is available in the official documentation, where you will also find the
identifier of the other prebuilt models.

Errors and exceptions

If language analysis fails, the Azure AI Language service can throw the following exceptions:

https://learn.microsoft.com/en-us/azure/ai-services/document-intelligence/concept-invoice

59

• InvalidDocumentFormatException: Thrown when the document submitted for
analysis, such as OCR or form recognition, is in an unsupported format or is unreadable.

• UnsupportedLanguageException: Raised when the document contains text in a
language not supported by the Document Intelligence service.

Do not forget to implement a try..catch block as a best practice for exception handling.

Running the application

Press F5 to run the application. When the main window appears, click Select Invoice. As you
can see in Figure 20, the AI Document Intelligence service has retrieved the information
specified in the C# code from the loaded PDF document.

Figure 20: Detecting invoice elements with AI Document Intelligence

As you can easily imagine, with limited effort you can automate the analysis and data extraction
from complex documents. Especially with PDFs, this is extremely valuable.

Hints about training and analyzing custom models

To create a sample app using Azure AI Document Intelligence against custom models, you
must follow a structured approach that includes defining a custom model, training it with labeled
data, and integrating it into your application. Custom models are especially useful when dealing
with specific document layouts that prebuilt models may not fully support, allowing for more
tailored and accurate data extraction.

In the Azure Portal, you navigate to your Azure AI Document Intelligence resource, and then
you will upload a set of documents (PDFs, images) for manually labelling key fields that you
want the model to recognize. The labeling process involves marking areas of interest (e.g.,
invoice numbers, dates, amounts) in the document. Once labeled, train your custom model by
specifying the set of labeled documents as the training data. The service uses these
annotations to learn the structure and recognize similar patterns in future documents. You can
find detailed guidance on training custom models in the official documentation.

60

After training, you’ll be provided with a model ID, which uniquely identifies your custom model.
To use this model in a .NET app, follow a similar process to the example outlined previously.
The difference lies in invoking the custom model by using its model ID instead of prebuilt model
IDs. In your code, replace the call to the prebuilt model (e.g., prebuilt-invoice) with your

custom model ID when using the AnalyzeDocumentAsync method of the

DocumentAnalysisClient class. This allows the application to process new documents using

the tailored extraction logic of your custom model. For more detailed steps and best practices
for custom models, you can refer to the official Azure AI Document Intelligence documentation
for composing custom models. This resource covers everything from creating and training
custom models to integrating them into applications.

Chapter summary

Azure AI Document Intelligence simplifies the extraction and processing of data from various
types of documents, from invoices to business cards, by leveraging powerful AI models. The
service supports both prebuilt models for common document types and custom models for
specific layouts, making it a versatile solution for automating document workflows. By
integrating this service into a WPF application using Visual Studio Code, you have seen how to
create a practical, real-world example that processes invoices, extracts critical data, and
presents it in an intuitive user interface. This approach can significantly reduce manual data
entry and enhance productivity across various industries.

https://learn.microsoft.com/en-us/azure/ai-services/document-intelligence/how-to-guides/compose-custom-models?view=doc-intel-4.0.0&tabs=studio

61

Chapter 6 Azure AI Content Safety

Microsoft Azure AI Content Safety is a cloud-based service that leverages machine learning and
AI techniques to help organizations monitor, review, and moderate user-generated content. This
chapter describes the AI Content Safety service and provides examples to analyze text and
images, with hints about video analysis.

Introducing Azure AI Content Safety

Microsoft Azure AI Content Safety is a powerful, AI-driven service designed to help businesses
and organizations maintain a safe and legally compliant digital environment by automatically
identifying harmful, inappropriate, or offensive content. As user-generated content continues to
proliferate on platforms such as social media, forums, and gaming communities, the need to
monitor and moderate this content effectively has become extremely important. Azure AI
Content Safety provides an automated, scalable solution that utilizes advanced AI models to
flag content that violates community guidelines or legal regulations. Replacing the deprecated
Azure AI Content Moderator, Azure AI Content Safety enhances the accuracy of detection by
leveraging cutting-edge AI models that have been trained on diverse datasets to recognize
various forms of harmful content, including hate speech, violent imagery, and more.

Summary of Azure AI Content Safety capabilities

The service allows developers to integrate moderation capabilities directly into their applications
and websites via a set of APIs, ensuring that harmful content can be intercepted before it
reaches a broader audience. It provides real-time moderation capabilities, making it ideal for live
platforms that require immediate action, such as social media networks, streaming services, and
online forums. The service uses a range of machine learning techniques to identify harmful
content, allowing users to set up rules and thresholds according to their needs.

Azure AI Content Safety can detect various types of undesirable content, including hate speech,
sexually explicit material, violence, harassment, and more. This detection can be fine-tuned with
custom settings, giving businesses the flexibility to align the moderation engine with their
specific guidelines.

One of the most interesting features of Azure AI Content Safety is its ability to handle
multilingual content, making it a viable solution for global platforms. Additionally, it integrates
seamlessly with human review workflows, ensuring that flagged content can be reviewed
manually when needed. This combination of AI and human moderation helps improve the
overall effectiveness and fairness of the moderation process.

62

Services of Azure AI Content Safety

Azure AI Content Safety is broken down into several services, each tailored to a specific type of
content: text safety, image safety, and video safety. These subservices allow developers to
implement moderation based on the type of content their platforms handle:

• Text safety focuses on analyzing textual content to detect inappropriate or harmful
language. This includes identifying hate speech, threats, sexually explicit language, and
offensive comments. The service can analyze text in multiple languages, making it a
versatile tool for global content moderation. Additionally, it can detect personally
identifiable information (PII) in text, which helps businesses comply with data protection
regulations.

• Image safety analyzes images to detect offensive or inappropriate visual content. The
AI models are trained to recognize explicit content, such as nudity or graphic violence,
and flag these images accordingly. The service can also detect potentially risky content
in various categories, allowing businesses to manage visual content more effectively.
For custom use cases, it is possible to configure custom image lists for the service to
reference during moderation.

• Video safety is built upon image safety by allowing for the moderation of video content.
The service analyzes video frames to detect harmful content, such as graphic violence
or explicit scenes, and flags them for review. Video safety can moderate both recorded
and live video streams, making it suitable for a variety of use cases, including video-
sharing platforms, live-streaming services, and online conferencing tools. The next
section provides code examples to help you understand how these services work.

Configuring the Azure resources

Before diving into the code, you need to set up the Azure AI Content Safety service on the
Azure Portal. Once logged in, and following the lesson learned in Chapter 3, click AI Services
and then locate the Content Safety service (usually at the bottom of the dashboard page).

Click Create under the service card and fill out the necessary details, such as subscription,
resource group, and region, as you did for the previous services. Assign content-safety-
succinctly as the service name for consistency with the current example. If the name is not
available, provide one of your choosing. Select the Free pricing tier and click Review + Create.
Finally, click Create to deploy the service.

Once the service is deployed, click Go to resource and retrieve your API key and endpoint
URL, which will be required for the code examples.

 Note: In the Azure Portal, you will also see the Content Moderator service, which
is the previous version of Azure AI Content Safety. Because Content Moderator has
been deprecated, it is available in read-only mode, and you can only view existing
resources.

https://portal.azure.com/

63

Sample application: text safety

The purpose of the first example is to create a .NET console application that integrates with the
Azure AI Content Safety API to analyze and moderate text input. The goal is to detect harmful
or offensive language in user-generated content, such as social media posts or forum
comments. To accomplish this, open Visual Studio Code and an instance of the Terminal,
where you type the following commands:

> md c:\AIServices\TextSafetyExample
> cd c:\AIServices\TextSafetyExample
> dotnet new console
> dotnet add package Azure.AI.ContentSafety

The Azure.AI.ContentSafety NuGet package is a library from the Azure SDK that allows for
interaction with the Content Safety service from .NET code. It will be required in all the
examples in this chapter. When the code editor is ready, add the content of Code Listing 7.

Code Listing 7

using System;

using System.Threading.Tasks;

using Azure;

using Azure.AI.ContentSafety;

namespace TextSafetyExample

{

 class Program

 {

 private static readonly

 string contentSafetyEndpoint = "your-endpoint";

 private static readonly

 string contentSafetyApiKey = "your-api-key";

 static async Task Main(string[] args)

 {

 var client = new ContentSafetyClient(

 new Uri(contentSafetyEndpoint),

 new AzureKeyCredential(contentSafetyApiKey));

 string textToModerate =

 "I think AI Services Succinctly is a good learning resource.";

 Console.WriteLine("Text to moderate:");

 Console.WriteLine(textToModerate);

 var moderationRequest = new AnalyzeTextOptions(textToModerate);

 Response<AnalyzeTextResult> result =

64

 await client.AnalyzeTextAsync(moderationRequest);

 Console.WriteLine("\nModeration Results:");

 if (result.Value.BlocklistsMatch != null)

 {

 Console.WriteLine("Blocked text match found:");

 foreach (var block in result.Value.BlocklistsMatch)

 {

 Console.WriteLine($"Name: {block.BlocklistName}, term:

 {block.BlocklistItemText}");

 }

 }

 if (result.Value.CategoriesAnalysis != null)

 {

 Console.WriteLine("\nCategory Analysis:");

 foreach (var category in result.Value.CategoriesAnalysis)

 {

 Console.WriteLine($"Category: {category.Category},

Confidence: {category.Severity}");

 }

 }

 }

 }

}

The code uses the following objects and members from the Azure AI Content Safety SDK:

• ContentSafetyClient: This is the core class that facilitates interaction with the Azure

AI Content Safety service. It is used to send text content for moderation. The client
requires a Uri for the service endpoint and an AzureKeyCredential for authentication.

For text content moderation, the AnalyzeTextAsync method is employed, which takes

in an AnalyzeTextOptions object and returns a Response<AnalyzeTextResult>. This

client is not limited to text moderation, as it also supports analyzing images and videos
via methods like AnalyzeImageAsync and AnalyzeVideoAsync, making it versatile for

different content moderation scenarios.

• AnalyzeTextOptions: This class encapsulates the configuration for a text moderation

request. It requires the text to be moderated as a string. The constructor also allows you
to include optional parameters, such as blocklist IDs, if you want to moderate content
against custom-defined blocklists. This flexibility makes it possible to tailor text
moderation to the specific needs of your application, such as filtering out sensitive
language or enforcing community guidelines.

65

• AnalyzeTextResult: This class represents the result of a text moderation operation,

and it exposes properties described in the next points.

• BlockListMatch: This class is part of the AnalyzeTextResult and encapsulates

information about blocked terms detected in the analyzed text. Each BlockListMatch

object contains properties like Term, which indicates the exact term that matched, and

ListId, which refers to the blocklist that triggered the match. This is particularly useful

when multiple blocklists are in use, allowing you to differentiate between different types
of violations or content concerns. You can also retrieve additional blocklist details using
methods like GetBlockListDetailsAsync if more context is needed.

• CategoriesAnalysis: This property is a collection of TextCategoriesAnalysis

objects. Each object in the collection exposes a Category property of type

TextCategory, an enumeration described in Table 2, and labels harmful content

categories detected in the text. Each category may appear with a confidence score,
giving insight into the AI's level of certainty. The categories span a wide range of harmful
content types, such as hate speech, adult content, and violence. For even more refined
moderation, developers can call methods like GetCategoryDetailsAsync, which offers

a deeper breakdown of the content categories.

• Response<T>: This is a generic class that wraps the result of the AnalyzeTextAsync

method. It provides access to the actual moderation result (AnalyzeTextResult)

through the Value property. Additionally, it contains HTTP response information like

status codes and headers, which can be helpful for debugging or logging purposes.

Table 2: Values from the TextCategory enumeration

Sexual
Indicates the content contains adult or
sexually explicit material.

Hate
Indicates the content contains hate
speech or offensive language targeting
individuals or groups.

Violence
Indicates the content contains violent or
graphic imagery.

SelfHarm
Indicates the content promotes self-
harm or suicidal ideation.

For the current example, there is intentionally no offensive or harmful content, since this is a
professional publication. However, you can try writing different text to see the results.

66

Running the application

Press F5 to start debugging the application. When you run a Console app for the first time,
Visual Studio Code will ask you to specify a debugger, as shown in Figure 21. Make sure you
click the C# option.

Figure 21: Selecting the C# debugger for Console apps

At this point, Visual Studio Code will ask you to specify the project that you want to debug from
a similar dropdown. You have only one project, so click its name. Now the application will be
built and started with an attached instance of the debugger. The application output is sent to the
DEBUG CONSOLE panel. Figure 22 shows the result of the text analysis for content safety.

Figure 22: The result of the text analysis for content safety

There is nothing offensive in the source text, and this is why nothing is found. Try on your
machine with different sentences to see how the result changes.

Sample application: image safety

The goal of the second example is creating a WPF app that allows users to select an image
from their local machine and send it to the Azure AI Content Safety service for moderation. The
goal is to analyze the selected image for harmful content, such as explicit images or graphic
violence, and display the results in the user interface. You do not need to set up a new resource
in Azure, you can reuse the existing service with its endpoint and key. What you instead need to
do is create a new WPF project with the following commands to be run in Visual Studio Code’s
Terminal:

> md c:\AIServices\ImageSafetyApp
> cd c:\AIServices\ImageSafetyApp

67

> dotnet new wpf
> dotnet add package Azure.AI.ContentSafety

As you can see, you will also use the same NuGet package from the Azure SDK, which implies
reusing some of the objects described in the first example.

Defining the user interface

The user interface for the sample application is very simple. It contains a button that allows for
loading an image, an Image control that displays the selected image, and a TextBlock that will

show the analysis result. Code Listing 8 contains the code that you need to add to the
MainPage.xaml file.

Code Listing 8

<Window x:Class="ImageSafetyApp.MainWindow"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

 xmlns:mc="http://schemas.openxmlformats.org/markup-

compatibility/2006"

 xmlns:local="clr-namespace:ImageSafetyApp"

 mc:Ignorable="d"

 Title="MainWindow" Height="450" Width="800">

 <Grid>

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto" />

 <RowDefinition Height="Auto"/>

 <RowDefinition />

 </Grid.RowDefinitions>

 <Button x:Name="SelectImageButton" Content="Select Image"

 Width="200" Click="SelectImageButton_Click" Margin="10" />

 <Image x:Name="SourceImage" Grid.Row="1"

 Margin="10" Width="320" Height="240"/>

 <TextBlock x:Name="ModerationResult"

 Grid.Row="2" Margin="10" />

 </Grid>

</Window>

Now that you have a convenient user interface, you are ready to analyze an image for content
safety in C#.

68

Image safety in C#

The imperative code for this example needs to load an image, analyze it for content safety, and
display the results. This is accomplished with the code shown in Code Listing 9 (comments will
follow shortly). For the endpoint and API key, reuse the same ones from the previous example.

Code Listing 9

using Azure;

using Azure.AI.ContentSafety;

using Microsoft.Win32;

using System;

using System.IO;

using System.Threading.Tasks;

using System.Windows;

using System.Windows.Media.Imaging;

namespace ImageSafetyApp

{

 public partial class MainWindow : Window

 {

 private static readonly string

 contentSafetyEndpoint = "your-endpoint";

 private static readonly string

 contentSafetyApiKey = "your-api-key";

 public MainWindow()

 {

 InitializeComponent();

 }

 private async void SelectImageButton_Click(object sender,

 RoutedEventArgs e)

 {

 OpenFileDialog openFileDialog = new OpenFileDialog();

 openFileDialog.Filter =

 "Image files (*.jpg, *.png)|*.jpg;*.png";

 if (openFileDialog.ShowDialog() == true)

 {

 string imagePath = openFileDialog.FileName;

 SourceImage.Source =

 new BitmapImage(new Uri(imagePath));

 await ModerateImage(imagePath);

 }

69

 }

 private async Task ModerateImage(string imagePath)

 {

 var client = new ContentSafetyClient(

 new Uri(contentSafetyEndpoint),

 new AzureKeyCredential(contentSafetyApiKey));

 string moderationResult = string.Empty;

 using (var imageStream = File.OpenRead(imagePath))

 {

 BinaryData imageData =

 BinaryData.FromStream(imageStream);

 var contentSafetyImageData =

 new ContentSafetyImageData(imageData);

 var moderationRequest =

 new AnalyzeImageOptions(contentSafetyImageData);

 Response<AnalyzeImageResult> result =

 await client.AnalyzeImageAsync(moderationRequest);

 foreach(var item in result.Value.CategoriesAnalysis)

 {

 moderationResult = string.Concat(

 moderationResult, $"\nCategory: {item.Category},

 Severity: {item.Severity}");

 }

 ModerationResult.Text = moderationResult;

 }

 }

 }

}

For the image analysis example, the following is the list of relevant objects and members from
the Azure AI Content Safety SDK:

• ContentSafetyClient: As in the text analysis example, this class is the primary way to

communicate with the Azure AI Content Safety service. However, in this case, the focus
is on analyzing images. The AnalyzeImageAsync method is used to send image content

for moderation. This method requires an AnalyzeImageOptions object and returns a

Response<AnalyzeImageResult>. This client can also handle text and video

moderation, making it adaptable for various content moderation needs. Beyond basic
moderation, developers can also utilize other client methods, such as starting
moderation jobs or fetching moderation summaries for more complex scenarios.

70

• AnalyzeImageOptions: This class represents the configuration for an image moderation

request. It requires an image stream (such as a file stream or a memory stream) and
provides options for configuring the moderation settings. You can define additional
parameters like blocklists or metadata, depending on the specific needs of your
application. This flexibility allows for different types of images to be moderated, from
user avatars to more complex media, ensuring that all visual content adheres to your
platform's guidelines.

• AnalyzeImageResult: This class encapsulates the result of an image moderation

operation. The primary property, IsHarmfulContent, is a Boolean value indicating

whether the image contains harmful or inappropriate content.

• CategoriesAnalysis: This property of the AnalyzeImageResult class provides a list

of harmful content categories detected in the image, each associated with a confidence
score. It is of type ImageCategory, an enumeration that exposes the same values

shown in Table 2 for the TextCategory enumeration but targeting images. The

categories cover a broad spectrum of harmful content, and the confidence scores allow
developers to adjust moderation thresholds based on how certain the AI is about the
content. For advanced use cases, the GetCategoryDetailsAsync method can provide

a more granular analysis of the categories detected in the image.

Now that you have learned the meaning of the relevant objects, you can run the sample
application.

Running the application

Press F5 to run the application. Select an image on your local machine and wait for the content
safety analysis to be completed. Figure 23 shows an example based on an image that does not
contain any offensive content.

Figure 23: Analyzing an image for content safety

As you can see, the application displays the severity level for each category of offensive
content. You can try yourself with different images to see the result.

71

Hints about content safety analysis on videos

If you want to perform content safety analysis on videos, you need to implement code that
extracts individual frames from the video and then analyzes such frames as images. While for
the image analysis you can reuse the code shown in Code Listing 9, frame extraction from
videos depends on the input format and the libraries you want to use, so it is not possible to
provide an example here. However, you know how to approach content safety analysis for
videos, too.

Errors and exceptions

If content analysis fails, the Azure AI Content Safety service can throw the following exceptions:

• UnsupportedContentTypeException: If the content type provided (such as an

unsupported image or text format) is invalid or not supported, this exception is thrown.
• ContentViolationException: Raised if the provided content violates Azure Content

Safety policies, potentially flagging inappropriate or restricted content.

Do not forget to implement a try..catch block as a best practice for exception handling.

Chapter summary

The Azure AI Content Safety service is a highly effective tool for automating the moderation of
user-generated content across various formats, including text, images, and videos. By
leveraging advanced AI models, the service helps businesses and platforms maintain
compliance with legal regulations and community guidelines, while also enhancing user safety.

The code examples provided demonstrate how to integrate and use these services in real-world
applications using Visual Studio Code. Whether moderating text for offensive language or
analyzing video frames for graphic content, Azure AI Content Safety empowers developers to
build safer online environments with minimal manual intervention.

72

Chapter 7 Azure AI Translator

Microsoft Azure AI Translator is a powerful, cloud-based machine translation service that
enables businesses and developers to integrate multilingual translation capabilities into their
applications, websites, and business workflows. This chapter describes Azure AI Translator,
explaining the available services and providing different code examples.

 Tip: The Azure AI Translator service supports many languages, represented by
language codes. The full list of languages and their codes is available in the
documentation. In this chapter, only the language codes that are relevant for the code
examples will be explained.

Introducing Azure AI Translator

The Azure AI Translator service offers a wide range of features for text and document
translation in real-time or batch processes. It supports numerous languages and allows for both
generic and specialized translation scenarios, such as translating conversational text, technical
documents, or entire websites. The service leverages advanced neural machine translation
models that continuously improve, providing high-quality translations with better contextual
understanding. The service is divided into two main offerings:

• Text translation: This is ideal for real-time scenarios where small text inputs need to be
translated quickly and efficiently. It supports features such as transliteration (converting
text from one script to another) and dictionary lookup (offering multiple translation
options for individual words or phrases). Text translation is suitable for applications like
live chat, email translation, and translating short text blocks on websites. This subservice
is designed for speed and performance, making it a preferred choice for dynamic
content.

• Document translation: This is designed to handle more complex translation scenarios
involving entire files or sets of files. It supports a variety of formats, including Word
documents, Excel spreadsheets, PowerPoint presentations, and PDFs. This subservice
preserves the original document's structure, formatting, and layout during translation,
making it ideal for legal contracts, research papers, and marketing materials. It operates
on a batch processing model, where files are uploaded to Azure Blob Storage, and then
processed in bulk. This makes it suitable for enterprise applications where large volumes
of documents need to be translated efficiently.

Azure AI Translator can be accessed through REST APIs, SDKs (like in the case of this ebook),
and integrations with other Microsoft products. It offers deployment flexibility with options for
cloud-based use and containerization for on-premises environments. Azure AI Translator’s
capabilities are designed to address various use cases, from simple text translation to handling
complex documents requiring contextual translation. The service has a robust infrastructure that
enables developers to build multilingual applications for diverse audiences. The primary
deployment models include cloud-based translation, where all processes are handled on

https://learn.microsoft.com/en-us/azure/ai-services/translator/language-support

73

Azure's infrastructure, and containerized translation, allowing for local deployment and control.
This service also supports the following scenarios:

• Transliteration: This allows converting text from one script to another. For instance, it can
convert Arabic script to Latin script, or Devanagari script to Latin script, making the
content readable by people who understand the language but use a different script.

• Dictionary Lookup: This feature provides detailed translation options for individual words
or short phrases. Instead of translating a full sentence, the dictionary lookup service
returns multiple translation options, definitions, and contextual meanings.

• Custom Translator: This allows users to fine-tune Azure's translation models with their
own data. This is useful for businesses or applications that need domain-specific
terminology, such as in legal, medical, or technical fields.

In the next sections, you will get examples about text and document translations, plus examples
about transliteration and dictionary lookup. Custom translators would require an additional
publication; for this reason, if you are interested in this topic, the official documentation is a
great starting point.

Configuring the Azure resources

Before diving into the code, you need to set up the Azure AI Translator service on the Azure
portal. Once logged in, and following the lesson learned in Chapter 3, click AI Services and
locate the Translator service. Click Create under the service card and fill out the necessary
details, such as subscription, resource group, and region, as you did for the previous services.

Assign translator-succinctly as the service name for consistency with the current example. If
the name is not available, provide one of your choosing. Select the Free pricing tier and click
Review + Create. Finally, click Create to deploy the service. Once the service is deployed, click
Go to resource and retrieve your API key and endpoint URL, which will be required for the
code examples.

 Note: For the Azure AI Translator service, you will see two endpoints: one with a
common URL that should be used for text translation, and one with a custom name,
which should be used for document translation. However, using the common URL for
text translation will result in a “Forbidden” error. You will then need to use the
custom endpoint also for this scenario.

Actually, you will also need to set up an Azure Blob Storage account for the example about
document translation, but this will be explained in the appropriate section.

Sample application: text translation

The goal of the first example is demonstrating how to translate text from English to Spanish
using Azure AI Translator’s Text Translation service. For this particular scenario, it is enough to
create a Console application.

https://learn.microsoft.com/en-us/azure/ai-services/translator/custom-translator/overview
https://portal.azure.com/
https://portal.azure.com/

74

Start VS Code and open a new instance of the Terminal. Then, type the following commands to
create a new Console app inside the root folder for the ebook examples:

> md \AIServices\TextTranslationApp
> cd \AIServices\TextTranslationApp
> dotnet new console
> dotnet add package Azure.AI.Translation.Text

The last command installs the Azure.AI.Translation.Text NuGet package, a library from the
Azure SDK that provides interaction with the Azure AI Translation service from .NET code.
When ready, write the code shown in Code Listing 10 (comments will follow shortly).

Code Listing 10

using Azure.AI.Translation.Text;
using Azure;

class Program
{
 private static readonly string endpoint =
 "your-endpoint";
 private static readonly string apiKey =
 "your-api-key";

 static async Task Main(string[] args)
 {
 var client = new TextTranslationClient(
 new AzureKeyCredential(apiKey),
 new Uri(endpoint));

 Console.WriteLine("Enter text to translate:");
 string inputText = Console.ReadLine();

 var response = await client.TranslateAsync("es", inputText);

 foreach (TranslatedTextItem translation
 in response.Value)
 {
 Console.WriteLine(
 $"Detected languages of the input text:
 {translation?.DetectedLanguage?.Language}
 with score: {translation?.DetectedLanguage?.Confidence}.");

 Console.WriteLine(
 $"Text was translated to: '{translation?.
 Translations?.FirstOrDefault().TargetLanguage}'
 and the result is: '{translation?.Translations?.
 FirstOrDefault()?.Text}'.");
 }
 }

75

}

Understanding the code should be quite simple. The TextTranslationClient class allows for

interacting with Azure AI Translator's Text Translation API. You still pass an instance of the
AzureKeyCredential class to provide authentication via the API key.

The TranslateAsync method translates text from one language to another; the first argument

is the target language, whereas the second argument is the input text. The return type is an
object of type Response<IReadOnlyCollection<TranslatedTextItem>>, and the actual

collection is stored inside the Value property. Each item in the collection is a

TranslatedTextItem object, which exposes the Translations property.

This is an IReadOnlyList<TranslationText> interface, and the TranslationText class

actually contains the translated text and the detected language with the level of confidence. For
simple translations like in the current example, it is sufficient to retrieve the string contained in
the Text property of the first element in the collection.

It is worth mentioning that you are not limited to one language. In fact, the TranslateAsync

method offers an overload that takes an object of type TextTranslationTranslateOptions as

an argument. That allows for specifying multiple languages and multiple strings to be translated.
Following is an example that translates a string into Czech, Spanish, and German:

TextTranslationTranslateOptions options =
 new TextTranslationTranslateOptions(
 targetLanguages: new[] { "cs", "es", "de" },
 content: new[] { inputText });

var response = await client.TranslateAsync(options);

You can then iterate the result like you did previously to get the translation for each language,
and you can pass multiple strings to the content named parameter.

Running the application

When you run a Console application in VS Code in debug mode, both the debugger output and
the application result are shown in the DEBUG CONSOLE panel. This might create confusion,
especially if the app is expecting input. For this reason, for this particular example, open an
instance of the Terminal and run the application without the debugger, typing the following
command:

> dotnet run

This will first build and then run the application in a clean Terminal window. Obviously, you will
still be able to press F5 and start debugging if something is not working as expected. Type in
some text in English and press Enter. After a few milliseconds, you will get the Spanish
translation, as shown in Figure 24.

76

Figure 24: Text translation with Azure AI Translator

It is easy to understand the potential of this service, which can translate complex sentences
from one language to another in milliseconds.

Sample application: transliteration

As mentioned at the beginning of this chapter, transliteration is the process of converting text
from one script to another. Converting Arabic script to Latin script, or Devanagari script to Latin
script, are examples of transliteration. This allows for making the content readable by people
who understand the language but use a different script.

Now, use the well-known commands to create a new Console app called
TextTransliterationApp and install the Azure.AI.Translation.Text NuGet package as you did for
the first example. The goal of this example is transliterating text from Vietnamese script to Latin
script using the Azure AI Translator service.

 Note: To avoid mistakes due to language knowledge, the source script has been
taken from the official Microsoft documentation.

To accomplish this, write the code shown in Code Listing 11. As usual, explanations will follow
shortly.

Code Listing 11

using Azure.AI.Translation.Text;
using Azure;

class Program
{
 private static readonly string endpoint =
 "your-endpoint";
 private static readonly string apiKey =
 "your-api-key";

 static async Task Main(string[] args)
 {

https://learn.microsoft.com/en-us/dotnet/api/overview/azure/ai.translation.text-readme?view=azure-dotnet#transliterate

77

 Console.OutputEncoding = System.Text.Encoding.UTF8;

 var client = new TextTranslationClient(
 new AzureKeyCredential(apiKey), new Uri(endpoint));

 // Vietnamese text taken from the MS documentation
 // Translates to "This is the problem" as per Google Translator.

 string inputText = "这是个测试。";

 Response<IReadOnlyList<TransliteratedText>> response =
 await client.TransliterateAsync(language: "zh-Hans",
 fromScript: "Hans",
 toScript: "Latn", inputText);
 IReadOnlyList<TransliteratedText> transliterations =
 response.Value;
 TransliteratedText transliteration =
 transliterations.FirstOrDefault();
 Console.WriteLine($"Transliterated Text: " +
 $"{transliteration.Text}");
 Console.ReadLine();
 }
}

The approach is very similar to what you saw for text translation. The TextTranslationClient

class allows for interacting with Azure AI Translator's Text Translation API. You still pass an
instance of the AzureKeyCredential class to provide authentication via the API key. The

TransliterateAsync method transliterates from one script to another; the first argument is the

source language, the second argument is the source script, the third argument is the target
script, and the fourth argument is the input text.

The return type is an object of type
Response<IReadOnlyCollection<TransliteratedText>>, and the actual collection is stored

inside the Value property. For simple transliterations like in the current example, it is sufficient

to retrieve the string contained in the Text property of the first element in the collection. For this

scenario, as well as for text translation, you are not limited to one language and script. In fact,
the TransliterateAsync method offers an overload that takes an object of type

TextTranslationTransliterateOptions as an argument and that allows for specifying

multiple strings to be transliterated. Following is an example:

TextTranslationTransliterateOptions options =
 new TextTranslationTransliterateOptions(language: "zh-Hans",
 fromScript: "Hans",
 toScript: "Latn",
 new string[] { inputText });
var transliteration = await client.TransliterateAsync(options);

You can then parse the result like you did previously to get the transliteration targets.

78

 Tip: Notice how the code assigns the UTF-8 encoding to the console output. This
ensures that text coming from other scripts is formatted properly.

Running the application

With the same purpose of avoiding confusion in the output panel as the first example, open an
instance of the Terminal and run the application without the debugger, typing the following
command:

> dotnet run

This will first build and then run the application in a clean Terminal window. You can always
press F5 and start debugging if something is not working. The text to be transliterated is hard-
coded, so you will directly get the result shown in Figure 25.

Figure 25: Text transliteration with Azure AI Translator

This is another very powerful feature, because it allows people with different linguistic
backgrounds to better understand the context of a written conversation.

Sample application: dictionary lookup

At the beginning of this chapter, we mentioned that dictionary lookup is a feature that provides
detailed translation options for individual words or short phrases. This feature is designed to
provide these detailed translations along with example sentences and multiple translation
options instead of translating a full sentence. The dictionary lookup is made of two parts: entry
search, which allows for finding entries related to the given words, and example search, which
finds examples based on the retrieved translations.

The goal of the next example is combining both parts by searching the Azure dictionary to find
Spanish translations for a single English word and then to find sample sentences based on the
most relevant translation. To accomplish this, open a new Terminal instance in VS Code and
create a new Console application called DictionaryLookupApp with the following commands:

79

> md \AIServices\DictionaryLookupApp
> cd \AIServices\DictionaryLookupApp
> dotnet new Console
> dotnet add package Azure.AI.Translation.Text

As you can see, you still install the same NuGet package of the previous examples. When
ready, enter the code shown in Code Listing 12, which contains comments and is followed by
explanations.

Code Listing 12

using Azure;
using Azure.AI.Translation.Text;

class Program
{
 private static readonly string endpoint =
 "your-endpoint";
 private static readonly string apiKey =
 "your-api-key";

 static async Task Main(string[] args)
 {
 // Create a client for the Azure AI Translator Text service.
 var client = new TextTranslationClient(
 new AzureKeyCredential(apiKey), new Uri(endpoint));

 string sourceLanguage = "en";
 string targetLanguage = "es";
 string inputText = "fly";

 // Step 1: Look up dictionary entries for the
 // given word (from English to Spanish).
 Response<IReadOnlyList<DictionaryLookupItem>> entriesResponse =
 await client.LookupDictionaryEntriesAsync(sourceLanguage,
 targetLanguage, inputText).ConfigureAwait(false);
 IReadOnlyList<DictionaryLookupItem> dictionaryEntries =
 entriesResponse.Value;
 DictionaryLookupItem dictionaryEntry =
 dictionaryEntries.FirstOrDefault();

 if (dictionaryEntry != null &&
 dictionaryEntry.Translations.Any())
 {
 Console.WriteLine($"For the given input '{inputText}', " +
 $"{dictionaryEntry.Translations.Count} " +
 $"entries were found in the dictionary.");

 // Display the first entry and its confidence.

80

 var firstTranslation = dictionaryEntry.
 Translations.FirstOrDefault();
 Console.WriteLine($"First entry: '
 {firstTranslation?.DisplayTarget}', " +
 $"confidence: {firstTranslation?.Confidence}.");

 // Step 2: Fetch example sentences for the first translation.
 IEnumerable<InputTextWithTranslation> inputTextElements = new[]
 {
 new InputTextWithTranslation(inputText,
 firstTranslation.DisplayTarget)
 };

 Response<IReadOnlyList<DictionaryExampleItem>>
 examplesResponse =
 await client.LookupDictionaryExamplesAsync(
 sourceLanguage,
 targetLanguage,
 inputTextElements
).ConfigureAwait(false);

 IReadOnlyList<DictionaryExampleItem> examples =
 examplesResponse.Value;
 DictionaryExampleItem exampleEntry = examples.FirstOrDefault();
 if (exampleEntry != null && exampleEntry.Examples.Any())
 {
 Console.WriteLine(
 $"\nExamples for translation '
 {firstTranslation.DisplayTarget}':");
 foreach (var example in exampleEntry.Examples)
 {
 Console.WriteLine($" - Source:
 $"{example.SourcePrefix} " +
 $"{inputText} {example.SourceSuffix}");
 Console.WriteLine(
 $" -> Target: {example.TargetPrefix} " +
 $"{firstTranslation.
 DisplayTarget} {example.TargetSuffix}");
 }
 }
 else
 {
 Console.WriteLine("No examples found.");
 }
 }
 else
 {
 Console.WriteLine("No translations found.");
 }

81

 Console.ReadLine();
 }
}

Following is an explanation of the types and members used in Code Listing 12:

• The TextTranslationClient is the primary class for interacting with the Azure AI

Translator service, and it works like in the previous examples, including authentication.

• The LookupDictionaryEntriesAsync method retrieves dictionary entries for a given

word or phrase, translating it from one language to another. The method signature
includes the following parameters: sourceLanguage, the language code of the input text

(e.g., en for English); targetLanguage, the language code of the output text (e.g., es for

Spanish); inputText, the word or phrase for which translations are requested. The

method returns a Response<IReadOnlyList<DictionaryLookupItem>>, where

DictionaryLookupItem contains the possible translations for the input text, along with

additional information such as part of speech, confidence scores, and grammatical
details. This allows the application to present multiple translation options for the user.

• The DictionaryLookupItem class represents a single dictionary entry returned by the

LookupDictionaryEntriesAsync method. Each DictionaryLookupItem exposes the

following properties: Translations, a list of possible translations, represented by a

TranslationItem object. Each translation includes the translated text, part of speech,

and confidence score; DisplaySource, the original word or phrase in the source

language; DisplayTarget, the translated word or phrase in the target language. This

class is essential for handling and organizing the translation results, which can include
multiple translations for a single input word.

• The TranslationItem class represents a single translation within a

DictionaryLookupItem. It exposes the following members: DisplayTarget, the

translated word or phrase; PosTag, the part of speech of the translated word (such as

noun, verb); Confidence, a numerical value indicating the confidence of the translation,

typically ranging from 0 to 1. This class allows us to extract and display detailed
information about each translation, including linguistic nuances like part of speech and
the certainty of the translation.

• The LookupDictionaryExamplesAsync method retrieves example sentences for a

given word or phrase, showing how the word is used in context. It requires the following
arguments: sourceLanguage, the language code of the input text; targetLanguage, the

language code of the translation; inputTextElements, a collection of

InputTextWithTranslation elements that contain both the source text and its

translation. The method returns a
Response<IReadOnlyList<DictionaryExampleItem>>, where each

DictionaryExampleItem contains examples of how the word and its translation are

used in real sentences. This method helps provide context for the translation, which can
be valuable in understanding nuances and proper usage.

• The InputTextWithTranslation class represents a pairing of a source text and its

translation. When calling the LookupDictionaryExamplesAsync method, you provide

an InputTextWithTranslation for the word you are querying and its corresponding

translation. This ensures that the examples are specific to the chosen translation.

82

• The DictionaryExampleItem class represents a set of example sentences returned by

the LookupDictionaryExamplesAsync method. Each DictionaryExampleItem

exposes the following properties: Examples, a list of DictionaryExample objects, each

representing an individual example sentence; SourcePrefix and SourceSuffix,

representing text that appears before and after the target word in the source language;
TargetPrefix and TargetSuffix, representing text that appears before and after the

target word in the target language.

• The DictionaryExample class represents a single example sentence from the list in

DictionaryExampleItem. It exposes the following properties: SourcePrefix,

SourceSuffix, TargetPrefix, and TargetSuffix, with the same purpose as

described in the previous point. This class allows you to see how a word or phrase is
used in context, which can be particularly helpful when learning how to properly use a
new language.

Now that you have a clear understanding of the objects used for dictionary lookup, it is time to
run the application and see the result of this complex work.

Running the application

With the same purpose of avoiding mixing the debugger output with the application output, run
the application by typing dotnet run inside an instance of the Terminal. Figure 26 shows the

result of the previous code.

Figure 26: Dictionary lookup with Azure AI Translator

As you can see, the application provides possible translations for the English word “fly,” and
then it shows example sentences for the most relevant translation.

83

Sample application: document translation

Document translation allows for translating entire documents while preserving the original
formatting, structure, and images. It is particularly useful when you need to translate complex
documents like contracts, reports, or presentations in various formats (such as .docx, .pdf, and
.pptx). Document translation is powered by the same neural machine translation technology
used in the text translation API, but it processes whole documents rather than individual pieces
of text. The service is typically designed to work with Azure Blob Storage for uploading, storing,
and processing documents. The process involves uploading source documents to a Blob
Storage container and specifying the target languages. Then, the translated documents are
stored in another container for efficiency purposes.

In this section, you will create a sample Console application that invokes the Azure AI Translator
API to translate an English document into Spanish. For consistency with the example, you can
use the Word document attached to the companion solution, which contains the unedited first
page of Chapter 2 of this ebook with all the formatting. This allows for demonstrating how the
translation process preserves the original formatting, other than translating the document. You
will also learn to set up an Azure Blob Storage account as the document store. This is explained
in the next paragraphs.

Brief introduction to Azure Blob Storage

 Note: BLOB is the acronym for Binary Large Object, and it has become a common
term in the information technology to represent complex binary data such as large
files.

Azure Blob Storage is a cloud storage solution designed for storing large amounts of
unstructured data, such as text or binary data. It is highly scalable, secure, and accessible via
HTTP/HTTPS. Blob Storage is optimized for handling data like documents, images, video files,
backups, and more. It's commonly used for scenarios such as storing files for distributed
access, streaming video and audio, serving images or documents directly to a browser, and
storing data for backup. Azure Blob Storage supports three main types of blobs:

• Block blobs: Used to store text and binary data. This is the most commonly used blob
type for general-purpose storage.

• Append blobs: Optimized for append operations, making them ideal for logging.

• Page blobs: Used for storing virtual hard disk (VHD) files.

For document translations, you will use block blobs. For more information, visit the Azure Blob
Storage documentation page.

Setting up the Azure Blob Storage

In order to take advantage of the document translation feature from Azure AI Translator, you
need to create an Azure Blob Storage where documents are uploaded for translation and saved
after translation. To accomplish this, open the Azure Portal, and in the dashboard, locate the
Storage accounts service (see Figure 27).

https://azure.microsoft.com/en-us/products/storage/blobs

84

Figure 27: Locating the Storage accounts service in the Azure Portal dashboard

Click Create. When the Storage accounts page opens, click Create. At this point, keep Figure
28 as a reference and enter the following information:

• Subscription: Choose your subscription.

• Resource group: Select the existing resource group created previously.

• Storage account name: Enter a unique name, which must be lowercase and a maximum
of 24 characters long.

• Region: Choose the region that is closest to you.

• Performance: Choose Standard for general-purpose usage.

• Redundancy: Select Locally-redundant storage (LRS) unless you need higher
availability options, like geo-redundant storage (GRS).

Figure 28: Assigning settings to the new Azure Storage account

85

When ready, click Review + Create > Create. After a few minutes, the service is deployed, so
click Go to resource when the deployment completion page appears. At this point, expand the
Security + networking node in the left-handed menu, and then click Access keys. When the
Access keys page appears (see Figure 29), locate the Key text box, click Show, and then copy
it to the clipboard for later reuse.

Figure 29: The security options for the Azure Blob Storage

The API key will be needed in the code example to connect to the Azure Blob Storage from C#.
Now you need to create two additional resources: containers, which represent the actual
storage for your documents, and shared access signatures (SAS) to grant temporary access to
documents via tokens.

Creating containers

Containers in the Azure Blob Storage organize your blobs into logical units. For the document
translation example, you need two containers: one for the source document, and one for the
translated document. In the left-hand menu, navigate to Containers (see Figure 30) and click
+Container.

86

Figure 30: Creating a new container

Enter a name for the container that stores source documents, for example source-documents.
Make sure that the access level is set as private (see Figure 30), and then click Create. When
the new container appears in the list, click its name. At this point, you will be able to see its
details and to upload files by clicking the Upload button.

A convenient user interface will help you upload the documents you want to translate. For
consistency with this ebook, you can upload the sourcedoc.docx file included in the companion
solution (see Figure 31).

Figure 31: Uploading documents to the Blob Storage

87

Once uploaded, navigate back to the containers page and repeat the steps to create a new
container called translated-documents. For now, this is all you need for file management. The
next step is about setting up access keys.

Defining shared access signatures

To allow Azure AI Translator to access your containers, you will need to generate shared
access signature (SAS) tokens for both containers. These tokens provide secure and temporary
access to your blobs. In order to create SAS tokens, navigate again to the Containers page.
Then, follow these steps:

1. Click the source-documents container.
2. When the container page appears, expand the Settings node and click Shared access

tokens in the left-hand menu.
3. In the Shared access tokens page (see Figure 32), leave unchanged the proposed

options. More specifically, the source-documents container should have read-only
permissions, and permissions should have limited time; with the default options, it is 24
hours.

4. For the current example, do not enter any IP address. This is something that your
network administrator will do in the real world.

Figure 32: Creating SAS tokens

When finished, click Generate SAS token and URL. You will get a token and a service URL,
which enable permissions over containers. You need to store the generated URL, as it will be
needed in the source code to identify and reach the resource. Repeat the same steps for the
translated-documents container, but make sure to also add the write permission. Now you have
all the necessary resources, and you can create a sample application.

88

Creating a Console app

Open a new Terminal instance in VS Code and create a new Console app called
DocumentTranslatorApp with the following commands:

> md \AIServices\DocumentTranslatorApp
> cd \AIServices\DocumentTranslatorApp
> dotnet new console
> dotnet add package Azure.AI.Translation.Document

The Azure.AI.Translation.Document NuGet package is required to work with document
translation features. When ready, open the project folder in Visual Studio Code and add the
code shown in Code Listing 13 to the Program.cs file. Comments will follow shortly.

Code Listing 13

using Azure;

using Azure.AI.Translation.Document;

class Program

{

 // Define constants for your Azure Translator resource.

 private static readonly string endpoint =

 "your-ai-translator-endpoint";

 private static readonly string apiKey =

 "your-ai-translator-api-key";

 static async Task Main(string[] args)

 {

 // Create the Document Translation client.

 var client = new DocumentTranslationClient(

 new Uri(endpoint), new AzureKeyCredential(apiKey));

 Uri sourceSasUri = new Uri("your-source-sas-url");

 Uri targetSasUri = new Uri("your-target-sas-url");

 // Create a translation operation.

 DocumentTranslationInput input =

 new DocumentTranslationInput(sourceSasUri,

 targetSasUri, "es"); // Translate to Spanish.

 Console.WriteLine("Translation started...");

 DocumentTranslationOperation operation =

 await client.StartTranslationAsync(input);

 // Wait for the translation to complete.

89

 await operation.WaitForCompletionAsync();

 Console.WriteLine("Document translation completed.");

 Console.ReadLine();

 }

}

The DocumentTranslationClient class allows you to interact with the Azure Document

Translation service, and it takes an instance of the AzureKeyCredential class as an argument

to provide authentication. This client is responsible for initiating and managing translation
operations. The DocumentTranslationInput class encapsulates all the essential information

required to perform a document translation. It holds references to the source and target Blob
Storage containers, specified as URIs, and the language into which the documents should be
translated.

The sourceSasUri and targetSasUri variables represent the URLs of the source document

container and translated document container, respectively. These variables will be filled with the
URLs with the appended token that you generated previously in the Defining Shared Access
Signatures paragraph.

The StartTranslationAsync method of DocumentTranslationClient initiates the translation

by starting a long-running operation. It returns an object of type
DocumentTranslationOperation that allows you to track the status of the translation as it

progresses. The sample code invokes the WaitForCompletionAsync method to

asynchronously wait for the translation operation to complete.

Running the application

The output of the sample application is very simple, as it shows two informational messages
before and after the translation. You are then free to run the application by either pressing F5
(with the debugger), or by typing dotnet run in the Terminal. Figure 33 shows the simple

output from the application.

Figure 33: Running the sample application

If everything succeeds, you will find your translated document in the translated-documents
container that you created previously. Figure 34 shows how to retrieve the translated document.

90

Figure 34: The translated document is available

You can click the file name to access a details page, where you will also find a Download
button. The result of the document translation is shown in Figure 35.

Figure 35: The translated document preserving formatting

91

As you can see, not only has the Azure document translator feature translated the document
into a different language, but it also has preserved all the source formatting (including
hyperlinks). As you can imagine, this is an extremely powerful feature that can literally
revolutionize the way companies manage documents, especially if they have customers abroad.

Errors and exceptions

If translation fails, the Azure AI Translation service can throw the following exceptions:

• TranslationLanguageNotSupportedException: Raised when the language you are
trying to translate to or from is not supported by the Translator service.

• QuotaExceededException: Thrown when the service usage exceeds the subscription's
quota, such as the character or document limit for translation.

Do not forget to implement a try..catch block as a best practice for exception handling.

Chapter summary

In this chapter about Azure AI Translator, you have discovered two main services: text
translation and document translation. Text translation is ideal for the real-time translation of
small text snippets, while document translation is designed for translating larger documents
while preserving their formatting.

The code examples showed practical implementations of text translation, transliteration,
dictionary lookup, and document translation, all within Visual Studio Code. By using Azure AI
Translator, developers can enhance their applications with advanced multilingual capabilities,
making them accessible to a global audience.

92

Chapter 8 Azure AI Speech

Microsoft Azure AI Speech is a powerful service that focuses on delivering cutting-edge speech
recognition, synthesis, and translation capabilities. In this chapter, you will learn about all the
available services and how to implement them in your .NET projects so that you will be able to
create voice-enabled applications.

Introducing Azure AI Speech

The Microsoft Azure AI Speech service leverages advanced machine learning models to
convert speech into text, synthesize natural-sounding speech from text, and translate speech
into various languages in real-time. This service is designed to integrate seamlessly into various
applications, providing developers with the tools they need to build voice-enabled applications,
create conversational AI experiences, and enhance accessibility with speech-to-text and text-to-
speech functionalities.

The service supports a wide range of use cases, including voice-activated assistants,
transcription services, real-time language translation, and the generation of audio content from
textual data. Azure AI Speech offers high accuracy and is continually updated to support new
languages, dialects, and scenarios, making it a versatile tool for global applications. The service
is built on Microsoft’s proprietary deep neural networks, ensuring that it delivers fast, reliable,
and high-quality results. Like for the other services, developers can use REST APIs, SDKs, and
client libraries to interact with the service, enabling easy integration into existing workflows and
applications.

Furthermore, Azure AI Speech supports customizable speech models, allowing businesses to
fine-tune the service according to their specific needs, such as adapting to industry-specific
terminology or enhancing recognition accuracy for certain accents. Azure AI Speech provides
three primary functionalities: speech-to-text, text-to-speech, and speech translation, as
described shortly.

Speech-to-text

This feature allows applications to convert speech into text. It supports real-time transcription
and batch processing of audio files, making it suitable for various applications, including meeting
transcriptions, voice command processing, and accessibility services. The speech-to-text
service is highly accurate, benefiting from continuous improvements in Microsoft's AI models. It
supports multiple languages and can be customized using custom models to improve accuracy
in specific contexts, such as industry jargon or regional accents.

93

Text-to-speech

This capability synthesizes natural-sounding speech from text, making it ideal for generating
spoken content dynamically. The text-to-speech service can be used in various scenarios,
including creating voice responses in chatbots, generating audio ebooks, and providing vocal
guidance in applications. It supports numerous languages and voices, including neural voices
that provide more natural intonations and expressions. Custom voice fonts can also be created
to match a brand's unique voice, ensuring consistency across various channels.

Speech translation

Azure AI Speech also offers real-time translation of speech into another language, enabling
cross-lingual communication in applications. This service can be integrated into multilingual chat
applications, global conferencing tools, and customer support systems to facilitate
communication between speakers of different languages. It supports a wide range of language
pairs and delivers translations with high accuracy and low latency, making it suitable for real-
time communication scenarios.

Additional features

In addition to these core features, Azure AI Speech offers features such as profanity filtering,
punctuation addition, and the ability to identify multiple speakers in a conversation (speaker
diarization). The service also integrates with other Azure services, such as Azure AI Language,
for enhanced functionality like sentiment analysis or key phrase extraction from transcribed text.
These additional features will not be covered in this chapter, so you can refer to the provided
documentation links.

Creating the required Azure resources

Before diving into three sample applications, one per feature, you need to create an Azure
resource for the AI Speech service. The steps are exactly the same as for the previous services
and can be summarized as follows:

1. Log in to the Azure Portal and click AI Services in the dashboard.
2. Locate the Speech service and click Create on its card to begin the setup.
3. Choose your subscription and the resource group created at the beginning of this ebook.
4. Select your closest region and provide a name for the service, for example, speech-

succinctly for consistency with the current examples.
5. Choose the Free pricing tier.
6. Click Review + Create and then Create to deploy the service.

Also remember to copy the name of the selected region and the API key. These will both be
required to authenticate against the service in C# code.

https://learn.microsoft.com/en-us/azure/cognitive-services/speech-service/speech-to-text#profanity-filtering
https://learn.microsoft.com/en-us/azure/cognitive-services/speech-service/speech-to-text#punctuation
https://learn.microsoft.com/en-us/azure/ai-services/speech-service/meeting-transcription
https://learn.microsoft.com/en-us/azure/ai-services/speech-service/meeting-transcription
https://portal.azure.com/

94

Sample application: speech-to-text

The goal of the first sample application is to demonstrate how to convert speech into text. This
will be accomplished by creating a WPF application that loads an existing audio file containing
spoken sentences. A .wav audio file is included with the companion solution and contains the
following sentence: “Hey! How are you doing today? I hope you are doing great!” Obviously, feel
free to select a different audio file.

Open a Terminal instance in Visual Studio Code and create a new project with the following
commands:

> md \AIServices\AzureSpeechToText
> cd \AIServices\AzureSpeechToText
> dotnet new wpf
> dotnet add package Microsoft.CognitiveServices.Speech

The Microsoft.CognitiveServices.Speech Nuget package allows for interacting with the Azure AI
Speech service from .NET and is common to all the examples described in this chapter. Open
the folder containing the new project and get ready to write code.

Defining the user interface

The user interface for the first sample project is very simple. It contains a button that allows for
loading an audio file, a label that displays the process status, and a text box that shows the
result of the conversion. Code Listing 14 contains the XAML code that needs to be added to the
MainPage.xaml file.

Code Listing 14

<Window x:Class="AzureSpeechToText.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Azure Speech to Text" Height="200" Width="400">
 <Grid Margin="10">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <Button Name="BtnOpenFile" Content="Open Audio File"
 Width="120" Height="30" Click="BtnOpenFile_Click"/>
 <TextBox Name="TxtTranscription" Width="360" Height="100"
 Margin="0,10,0,0" TextWrapping="Wrap" Grid.Row="1"/>
 <Label Name="LblStatus" Content="Status: Idle" Margin="0,10,0,0"
 Grid.Row="2" />
 </Grid>
</Window>

95

Adding speech-to-text capabilities in C#

Code Listing 15 contains the code that allows for loading and analyzing the audio file.
Comments will follow shortly.

Code Listing 15

using Microsoft.CognitiveServices.Speech;
using Microsoft.CognitiveServices.Speech.Audio;
using Microsoft.Win32;
using System.Windows;

namespace AzureSpeechToText
{
 public partial class MainWindow : Window
 {
 private string subscriptionKey =
 "your-api-key";
 private string region =
 "your-region";

 public MainWindow()
 {
 InitializeComponent();
 }

 private async void BtnOpenFile_Click(
 object sender, RoutedEventArgs e)
 {
 OpenFileDialog openFileDialog =
 new OpenFileDialog
 {
 Filter =
 "Audio Files (*.wav)|*.wav|All files (*.*)|*.*"
 };
 if (openFileDialog.ShowDialog() == true)
 {
 LblStatus.Content = "Status: Processing";
 string audioFilePath =
 openFileDialog.FileName;
 txtTranscription.Text =
 await TranscribeAudioAsync(audioFilePath);
 LblStatus.Content = "Status: Complete";
 }
 }

 private async Task<string>
 TranscribeAudioAsync(string audioFilePath)
 {

96

 var config = SpeechConfig.FromSubscription(
 subscriptionKey, region);
 using var audioInput =
 AudioConfig.FromWavFileInput(audioFilePath);
 using var recognizer =
 new SpeechRecognizer(config, audioInput);

 var result = await recognizer.RecognizeOnceAsync();
 return result.Text;
 }
 }
}

Following is a description of the types and members from the Azure SDK for AI Speech that are
relevant to the example:

• The SpeechConfig class is crucial for setting up the connection to Azure AI Speech

services. The FromSubscription method initializes the SpeechConfig with your Azure

subscription key and region, which is necessary to authenticate the service. Additionally,
the SpeechRecognitionLanguage property is used to specify the language in which

speech will be recognized, such as en-US for English.

• The AudioConfig class manages audio inputs and outputs. In this case, the

FromDefaultMicrophoneInput method is used to capture audio from the default

microphone of the system. AudioConfig can also be initialized from other sources, such

as FromWavFileInput, for reading audio from a WAV file, or FromStreamInput, for

capturing audio from a stream.

• The SpeechRecognizer class connects your application to Azure AI Speech for real-

time speech recognition. It requires both SpeechConfig and AudioConfig objects for

initialization. The RecognizeOnceAsync method is used in the example to perform

single-shot recognition, which means it listens for a single statement and returns the
recognized text. The SpeechRecognizer class also supports continuous recognition via

the StartContinuousRecognitionAsync method, which allows the application to keep

listening and transcribing speech until explicitly stopped by
StopContinuousRecognitionAsync. This can be useful for transcribing long

conversations or speeches.

• The SpeechRecognitionResult class represents the outcome of a speech recognition

operation. The Reason property is of type ResultReason and indicates whether the

recognition was successful (RecognizedSpeech) or encountered issues like NoMatch or

Canceled. The recognized text is typically accessed through the Text property. Table 3

summarizes possible values for the Reason property.

• The VoiceInfo class represents individual voices available for speech synthesis. Its

ShortName property identifies each voice by a concise identifier (such as en-US-
AriaNeural), which is used to set the SpeechSynthesisVoiceName in the

SpeechConfig instance.

97

Table 3: Values from the ResultReason enumeration (source: Microsoft)

Value Description

NoMatch Indicates speech could not be recognized.

Canceled Indicates the recognition was canceled.

RecognizingSpeech Indicates the speech result contains hypothesis
text.

RecognizedSpeech Indicates the speech result contains final text
that has been recognized.

RecognizingIntent Indicates the intent result contains hypothesis
text and intent.

RecognizedIntent Indicates the intent result contains final text and
intent.

TranslatingSpeech Indicates the translation result contains
hypothesis text and its translations.

TranslatedSpeech Indicates the translation result contains final
text and corresponding translations.

SynthesizingAudio
Indicates the synthesized audio result contains
a non-zero amount of audio data.

SynthesizingAudioCompleted
Indicates the synthesized audio is now
complete for this phrase.

RecognizingKeyword
Indicates the speech result contains (unverified)
keyword text.

RecognizedKeyword
Indicates that keyword recognition completed
recognizing the given keyword.

SynthesizingAudioStarted
Indicates the speech synthesis is now started.

https://learn.microsoft.com/en-us/dotnet/api/microsoft.cognitiveservices.speech.resultreason?view=azure-dotnet

98

Value Description

TranslatingParticipantSpeech
Indicates the transcription result contains
hypothesis text and its translations for other
participants in the conversation.

TranslatedParticipantSpeech
Indicates the transcription result contains final
text and corresponding translations for other
participants in the conversation.

TranslatedInstantMessage
Indicates the transcription result contains the
instant message and corresponding
translations.

TranslatedParticipantInstantMessage
Indicates the transcription result contains the
instant message for other participants in the
conversation and corresponding translations.

EnrollingVoiceProfile
Indicates the voice profile is being enrolled and
more audio is needed to complete a voice
profile.

EnrolledVoiceProfile
Indicates the voice profile has been enrolled.

RecognizedSpeakers
Indicates successful identification of some
speakers.

RecognizedSpeaker
Indicates successful verification of a speaker.

ResetVoiceProfile
Indicates a voice profile has been reset.

DeletedVoiceProfile
Indicates a voice profile has been deleted.

VoicesListRetrieved
Indicates the voices list has been retrieved
successfully.

 Note: The official documentation contains the full list of synthesized voices and
supported languages.

https://learn.microsoft.com/en-us/azure/cognitive-services/speech-service/language-support#text-to-speech
https://learn.microsoft.com/en-us/azure/cognitive-services/speech-service/language-support

99

Running the application

You can now run the application by pressing F5 for debugging. This is useful in case something
is not working as expected. When the application starts, select an audio file that contains
spoken sentences, and then wait for the operation to be completed. Figure 36 shows the result
based on the audio file attached to the companion solution.

Figure 36: Speech has been converted to text

As you can see, with extremely limited effort, you were able to transcribe spoken sentences into
text. Now you can take a step further by doing the opposite work: converting written text into
speech.

Sample application: text-to-speech

In this example, you will create a WPF application that allows for entering text and converts this
into speech using the Azure AI Speech text-to-speech functionality. The application will also
allow users to select a voice and then play the synthesized speech. You will understand how to
generate natural-sounding speech from text, which can be useful in scenarios such as
generating audio content, creating voice interfaces, or assisting visually impaired users.

Having said this, in Visual Studio Code, open an instance of the Terminal and create a new
WPF project with the following commands:

> md \AIServices\AzureTextToSpeech
> cd \AIServices\AzureTextToSpeech
> dotnet new wpf
> dotnet add package Microsoft.CognitiveServices.Speech

Now you are ready to define the user interface.

Defining the user interface

The user interface is very simple. It contains a text box where the user can enter input text, a
combo box from which the user can select one of the available voices per language, and a
button that starts the process. Code Listing 16 demonstrates this.

100

Code Listing 16

<Window x:Class="AzureTextToSpeech.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Azure Text to Speech" Height="250" Width="400">
 <Grid Margin="10">
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 </Grid.RowDefinitions>
 <TextBox Name="TxtInput" Width="360" Height="100"
 TextWrapping="Wrap" AcceptsReturn="True"/>
 <ComboBox Name="CmbVoices" Width="360" Height="30"
 Margin="0,10,0,0" Grid.Row="1"/>
 <Button Name="BtnSpeak" Content="Convert to Speech"
 Width="150" Height="30" Margin="0,10,0,0"
 Grid.Row="2" Click="BtnSpeak_Click"/>
 </Grid>
</Window>

The next step is adding the logic that enables the user interface.

Adding text-to-speech capabilities in C#

In the MainPage.xaml.cs, add the code shown in Code Listing 17. As usual, comments will
follow shortly. Also, you will notice some objects that were already discussed in the previous
example.

Code Listing 17

using Microsoft.CognitiveServices.Speech;
using System.Windows;

namespace AzureTextToSpeech
{
 public partial class MainWindow : Window
 {
 private string subscriptionKey =
 "your-api-key";
 private string region =
 "your-region";

 public MainWindow()
 {
 InitializeComponent();
 LoadVoicesAsync();

101

 }

 private async void LoadVoicesAsync()
 {
 var config = SpeechConfig.
 FromSubscription(subscriptionKey, region);
 var synthesizer =
 new SpeechSynthesizer(config);

 var result =
 await synthesizer.GetVoicesAsync();
 CmbVoices.ItemsSource =
 result.Voices.Select(v => v.ShortName).ToList();
 CmbVoices.SelectedIndex = 0;
 }

 private async void BtnSpeak_Click(
 object sender, RoutedEventArgs e)
 {
 if (string.IsNullOrWhiteSpace(TxtInput.Text)) return;

 var config = SpeechConfig.
 FromSubscription(subscriptionKey, region);
 config.SpeechSynthesisVoiceName =
 CmbVoices.SelectedItem.ToString();

 using var synthesizer = new SpeechSynthesizer(config);
 await synthesizer.SpeakTextAsync(TxtInput.Text);
 }
 }
}

Following is a description of the relevant types and members in the code:

• The SpeechConfig class has the same purpose as the previous example. In this case, it

is worth mentioning the SpeechSynthesisVoiceName property, which allows for

specifying the voice to use for synthesis. For instance, you might set this to en-US-
JennyNeural for a specific American English voice.

102

• The SpeechSynthesizer class handles the conversion of text into spoken audio. It

requires a SpeechConfig object for initialization. The SpeakTextAsync method is used

to take a string of text and synthesize it into speech, which is then played through the
configured audio output device. For more control, the SpeakSsmlAsync method can be

used to synthesize speech from SSML (Speech Synthesis Markup Language) input,
which allows for finer control over speech characteristics. Additionally,
StartSpeakingAsync begins synthesis and returns immediately, allowing the app to

perform other tasks while synthesis continues in the background.

• SpeechSynthesisResult: This class contains the result of the text-to-speech operation.

The Reason property indicates whether the synthesis was successful

(SynthesizingAudioCompleted) or encountered problems. Possible values are listed in

Table 1. The AudioData property contains the synthesized audio data in raw bytes,

which can be saved or further processed.

Running the application

At this point, you can finally run the application and see the result of the work. When running,
enter some text, as shown in Figure 36. Select one of the available voices, depending on the
language for your text, and then click Convert to Speech. Voice identifiers always start with a
language code, so for example, the en-US-EmmaNeural voice used in Figure 37 relates to the

en-US culture.

Figure 37: Converting text to speech

If everything is okay with the code, you will hear a voice speaking your text with a natural tone.

Sample application: speech translation

The last example for this chapter demonstrates how to create a WPF application that takes
spoken input from the user (via the default microphone) and translates it into a different
language using the Azure AI Speech translation service. This example is useful to reproduce
the scenario of real-time communication in multilingual settings, such as global conferences or
customer support.

With the usual approach, create a new WPF project called AzureSpeechTranslation with the
following commands to be typed inside a Terminal instance in VS Code:

> md \AIServices\AzureSpeechTranslation

103

> cd \AIServices\AzureSpeechTranslation
> dotnet new wpf
> dotnet add package Microsoft.CognitiveServices.Speech

Open the folder containing the project. Now, you will write a simple user interface and the logic
that translates the user input.

Defining the user interface

The user interface for this example is also very simple. It includes a ComboBox control to allow

the target language selection, a button that will enable the microphone and send the speech to
the Azure AI Speech service, and a text box that displays the translation result. Code Listing 18
demonstrates how to implement this simple user interface in the MainPage.xaml file.

Code Listing 18

<Window x:Class="AzureSpeechTranslation.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Azure Speech Translation" Height="200" Width="400">
 <Grid Margin="10">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition />
 </Grid.RowDefinitions>
 <ComboBox Name="CmbLanguages" Width="360" Height="30"
 VerticalAlignment="Top" Margin="0,10,0,0"/>
 <Button Name="BtnTranslate" Content="Translate Speech"
 Width="150" Height="30" Grid.Row="1"
 Margin="0,10,0,0" Click="BtnTranslate_Click"/>
 <TextBox Name="TxtTranslation" Width="360" Height="80"
 Margin="0,10,0,0" Grid.Row="2"
 TextWrapping="Wrap" AcceptsReturn="True"/>
 </Grid>
</Window>

Now you can add the C# logic that enables the controls.

Adding speech translation capabilities in C#

In the MainPage.xaml.cs file, add the code shown in Code Listing 19. Some objects related to
the AI Speech service will now be familiar, but explanations will follow shortly.

Code Listing 19

using Microsoft.CognitiveServices.Speech;

104

using Microsoft.CognitiveServices.Speech.Audio;
using Microsoft.CognitiveServices.Speech.Translation;
using System.Windows;

namespace AzureSpeechTranslation
{
 public partial class MainWindow : Window
 {
 private string subscriptionKey =
 "your-api-key";
 private string region =
 "your-region";

 public MainWindow()
 {
 InitializeComponent();
 LoadLanguages();
 }

 private void LoadLanguages()
 {
 CmbLanguages.ItemsSource =
 new[] { "fr-FR", "de-DE", "es-ES", "zh-CN" };
 CmbLanguages.SelectedIndex = 0;
 }

 private async void BtnTranslate_Click(
 object sender, RoutedEventArgs e)
 {
 try
 {
 var config = SpeechTranslationConfig.
 FromSubscription(subscriptionKey, region);
 config.SpeechRecognitionLanguage =
 "en-US";
 config.AddTargetLanguage(CmbLanguages.
 SelectedItem.ToString());

 // Configure microphone input.
 using var audioInput =
 AudioConfig.FromDefaultMicrophoneInput();
 using var recognizer =
 new TranslationRecognizer(config, audioInput);

 var result = await recognizer.RecognizeOnceAsync();

 if (result.Reason == ResultReason.TranslatedSpeech)
 {
 TxtTranslation.Text =

105

 result.Translations.FirstOrDefault().Value;
 }
 else
 {
 TxtTranslation.Text =
 "Translation failed: " + result.Reason.ToString();
 }
 }
 catch (Exception ex)
 {
 MessageBox.Show($"Error accessing the microphone:
 {ex.Message}");
 }
 }
 }
}

Following is a summary of the relevant objects used in the code:

• The AudioConfig class allows for interacting with audio devices. In particular, the

FromDefaultMicrophoneInput method captures audio from the default audio input

device.

• The TranslationRecognizer class creates a connection between the application and

the Azure AI Speech translation service, and it requires the service configuration and the
audio input configuration objects as arguments.

• The TranslationRecognizer.RecognizeOnceAsync method starts listening to the

incoming audio and stops listening when there is no more signal. At this point, it sends
the audio to the Azure AI Speech service. Alternative methods are
StartContinuousRecognitionAsync and StartKeywordRecognitionAsync; the first

method allows for continuous voice recognition, whereas the second one recognizes
keywords rather than sentences. Recognition with these methods must be then explicitly
stopped with the corresponding StopContinuousRecognitionAsync and

StopKeywordRecognitionAsync methods.

• The result is an object of type TranslationRecognitionResult. This exposes the

Result property, of type ResultReason, whose value will be TranslatedSpeech if the

translation was successful. Other possible values are summarized in Table 1. It also
exposes the Translations property, of type IReadonlyDictionary<string,
string>, whose first item contains the translation result that is displayed in the user

interface.

You can provide different messages and user interface behaviors, depending on the value
returned by the Reason property. Now that you have an idea of the types and members, you can

run the application.

106

Running the application

When you run the application (F5 or the dotnet run command from the Terminal), you will be

able to select a language and click the button to start voice recognition. Figure 38 shows an
example of speech translation using Azure AI Speech, where English speech has been
translated to French text.

Figure 38: Demonstrating speech translation

As you can imagine, the opportunities offered by this service are enormous. You can also
combine the three speech features together with Azure AI Translator to create powerful,
language-oriented applications.

Errors and exceptions

If the requested service fails, the Azure AI Speech service can throw the following exceptions:

• AudioFormatException: Occurs when the provided audio file is in an unsupported
format or the data is corrupted.

• SpeechRecognitionException: Happens when the speech-to-text engine cannot
properly process the audio, often due to low quality or unrecognizable speech patterns.

Do not forget to implement a try..catch block as a best practice for exception handling.

Chapter summary

The Microsoft Azure AI Speech service offers robust and flexible speech capabilities that can be
seamlessly integrated into .NET applications. You have seen how to use the speech-to-text
functionality to convert speech into text; you have seen how to use text-to-speech to convert
written text quickly into spoken, natural language; finally, you have seen how fast it is at
translating speech into written text from one language to another.

This powerful service is extremely valuable for developers looking to build voice-enabled
applications, enhance accessibility, or automate transcription processes. The example provided
not only illustrates the ease of integration but also highlights the possible applications of Azure
AI Speech in real-world scenarios.

107

Chapter 9 Azure AI Computer Vision
Services

The AI Computer Vision services represent one of the most relevant technologies in the AI
offerings from Microsoft, because they target advanced image and video analysis; therefore,
they can be of extremely common application. This chapter describes how to perform image
and OCR analysis with AI Computer Vision services, with examples that developers can
immediately apply in their scenarios.

Introducing Azure AI Computer Vision services

Microsoft Azure AI Computer Vision, also referred to as Computer Vision, is a part of Azure's
cognitive services that allows developers to integrate advanced computer vision capabilities into
their applications. Leveraging state-of-the-art machine learning models, it enables the analysis
and understanding of visual data, such as images, videos, and spatial information.

This service provides a range of features including image recognition, facial analysis, optical
character recognition (OCR), and spatial analysis. With Azure AI Computer Vision, businesses
can automate tasks that require visual data processing, such as extracting text from images,
identifying objects, or analyzing movement in physical spaces.

Azure AI Computer Vision is cloud-based, which means that it allows businesses to scale and
manage vision-related workloads without the need for on-premises infrastructure. The service
supports a wide range of industries, from retail and manufacturing to healthcare, providing
solutions that help automate and enhance business operations using AI-powered visual
analytics.

Azure AI Computer Vision is a comprehensive service that provides several functionalities
aimed at enabling businesses to extract insights from visual data. Some of the primary features
include:

• Image analysis: The image analysis service provides a set of functionalities to analyze
images and extract valuable insights. Using advanced algorithms, it detects objects,
people, and scenes; categorizes images into thousands of predefined tags; and provides
a summary of the image content in the form of a description. It also supports image
moderation to detect explicit or unwanted content. This service can handle various
image formats, and it provides analysis results in JSON format, making it easy to
integrate with different types of applications.

• Facial recognition: The facial recognition service focuses on identifying and analyzing
human faces in images or video feeds. It allows developers to detect and compare
faces, determine facial attributes such as age and gender, and even recognize
emotions. It is commonly used in security and identity verification systems. Additionally,
it supports creating face databases to recognize individuals and track their interactions
over time. Privacy and security are key concerns, and Azure AI Computer Vision offers
encryption and compliance features to meet legal requirements.

108

• Spatial analysis: This service enables developers to derive insights from real-time video
feeds. It uses AI models to detect and track movement in predefined spaces, identifying
patterns and generating actionable insights. Common use cases include analyzing
customer behavior in retail environments, monitoring safety protocols in workplaces, and
ensuring social distancing in public areas. Spatial analysis leverages Azure's scalable
architecture to handle large amounts of video data and can be integrated with IoT
devices for enhanced automation.

• Optical character recognition (OCR): Azure’s OCR capability transforms images of
text into machine-readable formats, supporting multiple languages and a wide range of
image formats. OCR is commonly used in scenarios such as document scanning, data
extraction from forms, and processing handwritten notes. The service can identify text in
various fonts and styles and convert it into structured data that can be processed further
or stored for future use.

As you can imagine, intelligent applications built on top of Azure AI Computer Vision can
dramatically help companies automate and improve their processes. The aforementioned
services are divided into two main groups: image analysis, spatial analysis, and OCR
recognition are part of the Computer Vision group. Face recognition is exposed by the Face API
group. Both go under the umbrella of the AI Computer Vision services. In the next sections, you
will start using AI Computer Vision with specific code examples built on top of WPF with a
convenient user interface.

Exclusions and limitations

The Azure AI Computer Vision services are extremely powerful, and for this reason they are
strictly regulated. For example, the Face recognition service can detect biometric information
and could help identify people and their physical characteristics. As you can imagine, this can
lead to enormous risks if the collected data is obtained, stored, and retrieved without the
appropriate permissions or outside scenarios specified by national and international laws.

Based on this, Microsoft decided to open Face API only to customers and organizations that
submit a registration form and comply with specific legal requirements. All the necessary
information can be found in the Limited Access to Face API page. As a consequence, this
chapter will only describe how to set up an application and how to write the necessary code to
work with Face API, but no image will be analyzed, and no screenshot will be provided.

 Note: For some Azure regions, Microsoft could allow age estimation and gender
detection without the need to submit a registration form.

Spatial analysis involves analyzing real-time videos via IP cameras and requires the presence
of multiple people to provide an appropriate result. Therefore, only a description of the service
and of the related .NET objects will be provided.

https://learn.microsoft.com/en-us/legal/cognitive-services/computer-vision/limited-access-identity

109

Configuring the Azure AI Computer Vision resources

Before diving into code examples, you need to set up the Azure AI Computer Vision service in
the Azure Portal. To accomplish this, follow these steps based on what you learned in the
previous chapters:

1. Go to the Azure Portal and sign in with your Azure account.
2. Click Azure AI services. Figure 39 shows where you can find both the Computer Vision

and Face API services.
3. Click Create on the Computer vision card.
4. On the Create Computer Vision page, choose your Azure subscription and specify the

resource group you created previously.
5. Choose the region closest to your location and enter a unique name for your AI

Computer Vision resource, for example, ai-vision-succinctly.
6. In the Pricing Tier box, select the Free plan.
7. Make sure you acknowledge that you have read the notice about responsible usage of

AI. Carefully read the full note and then select the related checkbox.
8. Click Review + Create > Create.

Figure 39: Locating the Computer Vision and Face API groups

Once the resource is created, go to the resource's overview page and locate your API key and
endpoint. These will be required to interact with the Azure AI Computer Vision service in C#
code.

https://portal.azure.com/

110

Sample application: image analysis

The goal of the first sample application is to allow users to upload an image from the local
machine and analyze it using the Azure AI Computer Vision’s image analysis service. The
application will display detected objects, tags, and a description of the image.

Open Visual Studio Code and start a new instance of the Terminal. When ready, type the
following sequence of commands:

> md \AIServices\ImageAnalysisApp
> cd \AIServices\ImageAnalysisApp
> dotnet new wpf
> dotnet add package Microsoft.Azure.CognitiveServices.Vision.ComputerVision

The Microsoft.Azure.CognitiveServices.Vision.ComputerVision NuGet package is required to
work against image analysis and OCR recognition features. When you’re ready, open the
project in VS Code. At this point, you can define a simple user interface.

Defining the user interface

In the MainPage.xaml file, add the code shown in Code Listing 20.

Code Listing 20

<Window x:Class="ImageAnalysisApp.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
 xmlns:local="clr-namespace:ImageAnalysisApp"
 mc:Ignorable="d"
 Title="MainWindow" Height="450" Width="800">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 </Grid.RowDefinitions>
 <Button Content="Upload Image" HorizontalAlignment="Left"
 VerticalAlignment="Top" Width="120" Margin="10,10,0,0"
 Height="30" Click="UploadImage_Click"/>
 <Image Grid.Row="1" x:Name="UploadedImage"
 HorizontalAlignment="Left" VerticalAlignment="Top"
 Margin="10,10,0,0" Width="300" Height="300"/>
 <TextBlock Grid.Row="2" x:Name="AnalysisResult"
 HorizontalAlignment="Left" VerticalAlignment="Top"
 Margin="10,10,0,0" TextWrapping="Wrap"

111

 FontSize="16"/>
 </Grid>
</Window>

As you can see, the user interface is very simple: it contains a button that allows for uploading
an image file of choice, an Image control to display the image, and a TextBlock that displays

the analysis result. Now it is time to leverage the image analysis API in C#.

Image analysis in C#

The purpose of the code is to make the application analyze an image and display a description,
tags, and detected objects. For instance, uploading an image of a car might result in the
description "A red car on the road," tags such as "car" and "road," and object detection for the
car itself. Code Listing 21 demonstrates how to accomplish this, with code that you need to write
into the MainPage.xaml.cs file.

Code Listing 21

using System;
using System.IO;
using System.Windows;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using Microsoft.Azure.CognitiveServices.Vision.ComputerVision;
using Microsoft.Azure.CognitiveServices.Vision.ComputerVision.Models;

namespace ImageAnalysisApp
{
 public partial class MainWindow : Window
 {
 private readonly string subscriptionKey
 = "your-api-key";
 private readonly string endpoint
 = "your-endpoint";
 private readonly ComputerVisionClient client;

 public MainWindow()
 {
 InitializeComponent();
 client = new ComputerVisionClient(
 new ApiKeyServiceClientCredentials(subscriptionKey))
 {
 Endpoint = endpoint
 };
 }

 private async void UploadImage_Click(object sender,

112

 RoutedEventArgs e)
 {
 var openFileDialog = new Microsoft.Win32.OpenFileDialog();
 openFileDialog.Filter =
 "Image files (*.jpg, *.jpeg, *.png)|*.jpg;*.jpeg;*.png";

 if (openFileDialog.ShowDialog() == true)
 {
 string filePath = openFileDialog.FileName;
 UploadedImage.Source = new BitmapImage(new Uri(filePath));
 using (var imageStream = File.OpenRead(filePath))
 {
 var features = new List<VisualFeatureTypes?>
 {
 VisualFeatureTypes.Tags,
 VisualFeatureTypes.Description,
 VisualFeatureTypes.Objects
 };
 var analysis = await client.
 AnalyzeImageInStreamAsync(imageStream, features);

 string result = $"Description: " +
 $"{analysis.Description.Captions[0].Text}\n";
 result += "Tags: " + string.Join(", ",
 analysis.Tags.Select(tag => tag.Name)) + "\n";
 result += "Objects:\n";

 foreach (var obj in analysis.Objects)
 {
 result += $"- {obj.ObjectProperty} at " +
 $"{obj.Rectangle.X},{obj.Rectangle.Y}\n";
 }

 AnalysisResult.Text = result;
 }
 }
 }
 }
}

Following is a list of the relevant types and members used in the code:

• The ComputerVisionClient class provides access to the Azure Computer Vision API.
It facilitates the analysis of images by interacting with the cloud service. In the sample,
the AnalyzeImageInStreamAsync method is used to submit an image for analysis, but
the class also supports other methods for different scenarios. These include
AnalyzeImageAsync for image URLs, and ReadAsync for text extraction. The
ComputerVisionClient class requires an instance of
ApiKeyServiceClientCredentials to authenticate with the Azure service.

113

• The VisualFeatureTypes enumeration defines the types of visual features that can be
extracted from an image. In the sample, Objects and Tags are requested, but other
values are available for different use cases. For instance, Categories returns a
hierarchical list of objects, while Description generates human-readable descriptions
of the image content. The enumeration also includes values like Faces, ImageType,
Color, and Adult, which provide information on the people in the image, the image's
type, dominant colors, and the presence of adult content, respectively.

• The DetectedObject class represents objects detected in an image. It contains
properties such as ObjectProperty, which holds the name of the detected object, and
Confidence, which indicates the model's confidence level in the detection. The
DetectedObject class also includes Rectangle, a property of type BoundingRect,
which provides the coordinates of the bounding box around the detected object. This
enables drawing or highlighting the detected objects in a user interface. The sample
demonstrates the use of these properties to retrieve and display the name and bounding
box of each detected object.

• The ImageTag class represents the tags generated from the image analysis. Each tag is
associated with a specific object or concept identified in the image. The ImageTag class
contains properties like Name, which represents the tag’s name, and Confidence, which
indicates the model’s confidence level in the accuracy of the tag. In the sample, tags are
extracted and listed along with their confidence values. Tags can be used for metadata
generation, content categorization, or search indexing in various applications.

Now that you have more details about the relevant objects, it’s time to run the application.

Running the application

To run the application, you can either press F5 for debugging mode or type dotnet run in the

Terminal. When the application starts, click Upload Image and select an image you want to
analyze. The companion solution includes an image, whose analysis results are as shown in
Figure 40.

114

Figure 40: Image analysis result

As you can see, the Computer Vision service has returned a description in natural language,
also providing tags. No objects are detected in the picture, so these are not described. You can
easily imagine the potential of this feature, for example in helping visually impaired people.

Sample application: face detection

 Note: Based on the limitations described at the beginning of this chapter, only the
source code and explanation will be provided.

The Face API can not only detect faces inside an image or video, but also their attributes,
including biometric characteristics. The purpose of the sample code is to detect faces in a
locally stored image and analyze facial attributes such as age and emotions.

Follow the steps you already know to create a new WPF application called FaceAnalysisApp in
Visual Studio Code. You also need to install the Microsoft.Azure.CognitiveServices.Vision.Face
NuGet package, currently in preview, with the following command line:

> dotnet add package Microsoft.Azure.CognitiveServices.Vision.Face

At this point, you can configure the Azure resources.

115

Configuring the Azure resources

Face recognition relies on a dedicated Azure service called Face API, so you cannot reuse the
resources created previously. In the Azure Portal, click AI Services. Locate the Face API
service (see Figure 38) and click Create. Follow the same steps described for image analysis to
set up the new service, which can be called face-succinctly-service. Review and create the
Face API service and, when deployed, follow the steps you know to retrieve the endpoint and
API key.

Defining the user interface

For the user interface, you can simply reuse the XAML shown in Code Listing 4, which allows
you to upload an image and display the analysis results.

Face detection in C#

The sample application will detect faces in an uploaded image and display attributes such as
estimated age and dominant emotions. For example, uploading an image of a person smiling
may result in detecting a face with the emotion "Happiness." To accomplish this, write the code
shown in Code Listing 22 in the code-behind file for the main page.

 Code Listing 22

using System;
using System.IO;
using System.Linq;
using System.Windows;
using System.Windows.Media.Imaging;
using Microsoft.Azure.CognitiveServices.Vision.Face;
using Microsoft.Azure.CognitiveServices.Vision.Face.Models;

namespace FaceAnalysisApp
{
 /// <summary>
 /// Interaction logic for MainWindow.xaml
 /// </summary>
 public partial class MainWindow : Window
 {
 private readonly string subscriptionKey = "your-key-here";
 private readonly string endpoint = "your-endpoint-here";
 private readonly FaceClient faceClient;

 public MainWindow()
 {
 InitializeComponent();
 faceClient = new FaceClient(
 new ApiKeyServiceClientCredentials(subscriptionKey))

https://portal.azure.com/

116

 {
 Endpoint = endpoint
 };
 }

 private async void UploadImage_Click(object sender,
 RoutedEventArgs e)
 {
 var openFileDialog = new Microsoft.Win32.OpenFileDialog();
 openFileDialog.Filter =
 "Image files (*.jpg, *.jpeg, *.png)|*.jpg;*.jpeg;*.png";

 if (openFileDialog.ShowDialog() == true)
 {
 string filePath = openFileDialog.FileName;
 UploadedImage.Source = new BitmapImage(new Uri(filePath));
 using (var imageStream = File.OpenRead(filePath))
 {
 var faceAttributes = new FaceAttributeType[]
 {
 FaceAttributeType.Age,
 FaceAttributeType.Emotion
 };
 var faces = await faceClient.
 Face.DetectWithStreamAsync(imageStream,
 returnFaceAttributes: faceAttributes);

 string result = "Detected faces:\n";

 foreach (var face in faces)
 {
 result += $"- Face detected with age:
 {face.FaceAttributes.Age}, " +
 $"Emotion: {face.FaceAttributes.Emotion.
 ToRankedList().
 FirstOrDefault().Key}\n";
 }

 AnalysisResult.Text = result;
 }
 }
 }
 }
}

Following is a list of relevant types and members used to perform face recognition:

• FaceClient: The main client class to interact with Azure’s facial recognition service.

• FaceAttributeType: Specifies the facial attributes to detect, such as age and emotions.

117

• DetectedFace: Represents a detected face, containing information about the face's

attributes.

• DetectWithStreamAsync: A method that executes the actual analysis over a stream. As

an alternative, you can use DetectWithUrlAsync if the image can be reached via URL.

• FaceAttributes: A collection of detected face attributes. Each attribute is represented

by a property; for example, Age represents the estimated age, and Emotion represents

the emotional attributes detected on the face. Properties like Age and Emotion contain

collections of values, ordered by rank.

• ToRankedList: A method that returns an IEnumerable<KeyValuePair<string,
double>>. Values in this collection are ordered by rank, from the highest match to the

lowest.

As mentioned previously, you will be able to run face detection only if you submit a registration
form to Microsoft and your application is approved.

Sample application: OCR

The goal of the third sample application is to show the optical character recognition (OCR)
features provided by the Azure AI Computer Vision service. This will be demonstrated by
retrieving text detected on a JPEG image. For the sake of simplicity, an image file with text is
included with the companion source code and can be used for the next example. The good
news is that you do not need to configure a new Azure resource, because OCR recognition is
part of the image analysis API that you already configured and used for the first sample
application. Having said this, open the Terminal in Visual Studio Code and create a new WPF
app called OCRApp with the following commands:

> md \AIServices\OCRApp
> cd \AIServices\OCRApp
> dotnet new wpf
> dotnet add package Microsoft.Azure.CognitiveServices.Vision.ComputerVision

When you’re done, open the project folder in Visual Studio Code and open the MainPage.xaml
file.

Defining the user interface

For the user interface, you can safely reuse the same XAML code shown in Code Listing 4. In
fact, you need the same visual elements: a button to load the image file, an Image control to

display the image, and a TextBlock that shows the analysis result. At this point, you can

implement the C# code that performs the image analysis.

118

OCR in C#

The application will extract text from the uploaded image and display it in the text area. For
example, uploading an image of a receipt will result in the display of its printed text. To
accomplish this, open the MainPage.xaml.cs file and add the code shown in Code Listing 23 (an
explanation is coming shortly). Notice that you use the same API key and service endpoint of
the first sample project.

Code Listing 23

using Microsoft.Azure.CognitiveServices.Vision.ComputerVision;
using System.IO;
using System.Windows;
using System.Windows.Media.Imaging;

namespace OCRApp
{
 public partial class MainWindow : Window
 {
 private readonly string
 subscriptionKey = "your-api-key";
 private readonly string
 endpoint = "your-endpoint";
 private readonly ComputerVisionClient client;

 public MainWindow()
 {
 InitializeComponent();
 client = new ComputerVisionClient(
 new ApiKeyServiceClientCredentials(subscriptionKey))
 {
 Endpoint = endpoint
 };
 }

 private async void UploadImage_Click(object sender,
 RoutedEventArgs e)
 {
 var openFileDialog = new Microsoft.Win32.OpenFileDialog();
 openFileDialog.Filter =
 "Image files (*.jpg, *.jpeg, *.png)|*.jpg;*.jpeg;*.png";

 if (openFileDialog.ShowDialog() == true)
 {
 string filePath = openFileDialog.FileName;
 UploadedImage.Source =
 new BitmapImage(new Uri(filePath));
 using (var imageStream = File.OpenRead(filePath))
 {

119

 var ocrResult = await client.
 RecognizePrintedTextInStreamAsync(true,
 imageStream);

 string result = "Extracted text:\n";

 foreach (var region in ocrResult.Regions)
 {
 foreach (var line in region.Lines)
 {
 result += string.Join(" ",
 line.Words.Select(word => word.Text)) +
 "\n";
 }
 }

 AnalysisResult.Text = result;
 }
 }
 }
 }
}

Following is a description of the relevant types and members used for OCR:

• The ComputerVisionClient class is the main entry point for accessing the Azure

Cognitive Services Computer Vision API. In the example, the
RecognizePrintedTextInStreamAsync method is used to perform OCR on an image

stream. This method sends the image to the Azure service, where it recognizes printed
text. The client requires authentication via the ApiKeyServiceClientCredentials

class, which is initialized with the subscription key provided by Azure. Additionally, the
Endpoint property must be set to the service's endpoint URL to establish the

connection.

• The RecognizePrintedTextInStreamAsync method takes a Boolean parameter to

specify whether to detect the text orientation and a stream containing the image data.
The result of this method is an OcrResult object, which contains the recognized text

broken down into regions, lines, and words. Alternative methods such as
RecognizePrintedTextAsync can be used to perform OCR on images from a URL

rather than a stream.

• The OcrResult class encapsulates the result of the OCR operation. It contains the

Regions property, which is a collection of OcrRegion objects. Each OcrRegion

represents a detected block of text within the image, typically corresponding to
paragraphs or larger text areas. The OcrResult also includes the Language property,

indicating the detected language of the text in the image. The Orientation property

specifies the text orientation, such as up, down, or sideways.

120

• The OcrRegion class represents a region of detected text in the image. It contains the

Lines property, which is a collection of OcrLine objects. Each OcrRegion corresponds

to a larger block of text, like a paragraph, and within that region, text is further broken
down into lines. The BoundingBox property provides the coordinates of the region,

allowing for spatial analysis of where the text is located within the image.

• The OcrLine class represents a line of text within an OcrRegion. It contains the Words

property, which is a collection of OcrWord objects. The OcrLine object also includes a

BoundingBox property, which gives the coordinates of the line within the image. The

sample code iterates through the Lines property of each OcrRegion to extract and

display the recognized text.

• The OcrWord class represents an individual word recognized in a line of text. The Text

property contains the actual word recognized by the OCR service. Like OcrRegion and

OcrLine, the OcrWord object has a BoundingBox property that specifies the word's

position within the image. The sample code demonstrates how to concatenate the
recognized words in a line to form the complete text output.

The RecognizePrintedTextInStreamAsync method uses the TextRecognitionMode

enumeration to distinguish between printed text and handwritten text. The enumeration has two
values: Printed, which is used when recognizing printed text, and Handwritten, which is used

when recognizing handwritten text, allowing for the identification of cursive or printed
handwriting. Now that you have knowledge of the SDK types for OCR, it is time to start the
application.

Running the application

You can now run the application, pressing F5 to start it in debugging mode or typing dotnet
run in the Terminal. When you’re ready, click Upload Image. Select an image file that contains

text, such as the sample image included with the companion solution. Figure 41 shows the
result of the OCR processing on the companion image file.

121

Figure 41: Result of the AI-powered OCR

This is another extremely powerful feature: imagine the combination of OCR with translation
services, and how this could help customers worldwide. Also, remember that OCR works with
any image that contains text, not just plain text saved as image files.

Hints about Spatial Analysis

Azure Spatial Analysis, part of the Azure AI Computer Vision suite, is designed to analyze
physical spaces by tracking objects (like people) in a given environment using live video feeds
from connected cameras. The service provides capabilities such as monitoring room
occupancy, social distancing, and tracking the movement of people in real-time. Spatial analysis
can be highly valuable for businesses, security systems, and smart building management.

Azure Spatial Analysis relies on the Azure Cognitive Services Computer Vision SDK, which
handles the interaction with the service. The main types and methods involved in setting up a
spatial analysis application are summarized in Table 4.

Table 4: Relevant types used for spatial analysis

.NET Type Description

ComputerVisionClient This class is the main entry point for interacting
with the Computer Vision service, including
spatial analysis features. It provides methods for
sending video frames and receiving analyzed
data.

122

.NET Type Description

AnalyzeImageInStreamAsync Used for analyzing images or video frames
streamed to the API. While this is more
commonly used for image analysis, spatial
analysis often involves sending frames from a
video stream for continuous evaluation.

SpatialAnalysisConfiguration Represents the configuration for a spatial
analysis operation. It includes information such
as the camera setup, spatial zones, and rules
for triggering events (e.g., when a specific
number of people enter a designated area).

SpatialOperationResult The result object returned after performing a
spatial analysis operation. It contains the
analyzed data from the video feed, including
information like detected people, their positions,
and any specific rule violations.

PeopleCount The number of people detected within the
analyzed area.

OccupancyStatus Information about the occupancy in specific
zones.

PersonDetails Detailed information about each detected
person, such as their location, movement
patterns, and proximity to others.

Zone Defines a specific area within the spatial
environment that you want to monitor. A zone
can represent rooms, aisles, or specific
boundaries where you want the analysis to
occur.

Person Represents an individual detected in the video
feed. This object includes data like the person’s
location, movement, and interaction with other
people or objects within the defined zones.

ProximityRule A configuration object that defines rules for
proximity analysis, such as checking whether
two or more people are standing too close to
each other. This is particularly useful for
enforcing social distancing rules in a physical
space.

Further information and code examples about accessing IP (Internet Protocol) cameras can be
found in the official documentation page.

https://learn.microsoft.com/en-us/azure/ai-services/computer-vision/spatial-analysis-operations

123

Errors and exceptions

If any of the requested services fails, the Azure AI Vision service can throw the following
exceptions:

• ImageFormatException: Thrown when the provided image for analysis is in an

unsupported format (e.g., TIFF when only JPEG or PNG is allowed).

• OCRLanguageNotSupportedException: Thrown when the OCR service does not

support the language in the image.

Do not forget to implement a try..catch block as a best practice for exception handling.

Chapter summary

Microsoft Azure AI Computer Vision provides powerful tools for integrating AI-driven image and
video analysis into applications. From recognizing objects and faces to extracting text from
images and analyzing spatial movement, these services can enhance a wide range of business
applications.

The provided code examples demonstrate real-world use cases such as image tagging, face
detection, and OCR, offering a practical starting point for developers seeking to leverage Azure
AI Computer Vision in their applications. By integrating these services, businesses can improve
automation, security, and data extraction processes, ultimately leading to more intelligent and
efficient operations.

124

Conclusion

Microsoft Azure AI services present a robust and comprehensive suite of tools designed to
enable businesses to harness the power of artificial intelligence with scalability and flexibility.
From natural language processing and computer vision to advanced machine learning models,
Azure’s AI services provide significant opportunities for organizations to automate tasks, gain
deeper insights from data, and enhance customer experiences. The platform’s seamless
integration with other Microsoft services, along with its commitment to security and regulatory
compliance, positions it as a key player in the AI landscape. Building intelligent apps on top of
.NET with Visual Studio Code makes development easier and available to all the major systems
on the market.

This ebook highlighted Azure’s AI services features through prebuilt models and customizable
solutions. It’s suitable for both AI beginners and seasoned developers. However, while Azure AI
services offer substantial benefits, it is crucial for organizations to align their AI strategies with
their business goals, considering factors such as cost, infrastructure, and the potential ethical
implications of deploying AI solutions. Overall, Azure’s AI capabilities are well-suited for
companies seeking to innovate and stay competitive in a rapidly evolving digital world.

	Table of Contents
	The Succinctly Series of Books
	Let us know what you think

	About the Author
	Introduction
	Assumptions about the reader

	Chapter 1 Introducing Azure AI Services
	Overview of Azure AI services
	The Microsoft Responsible AI Standard and Principles
	Azure AI Search
	Azure AI Language services
	Azure AI Document Intelligence
	Azure AI Decision services
	Azure AI Translator
	Azure AI Speech services
	Azure AI Computer Vision
	Other AI services
	Azure OpenAI service
	Azure AI Bot service

	Programming with Azure AI services
	Chapter summary

	Chapter 2 Setting Up the Development Environment
	Registering for an Azure subscription
	Locating the Azure AI services
	Creating a resource group

	Installing .NET and .NET SDK
	Installing and configuring Visual Studio Code
	Additional configuration
	Creating applications with the .NET CLI
	Opening projects in Visual Studio Code
	Common errors and exceptions

	Chapter summary

	Chapter 3 Azure AI Search
	Introducing Azure AI Search
	Creating a sample application
	Creating the Azure resources
	Creating an index

	Creating a WPF application
	Defining the user interface
	Performing intelligent search in C#
	Errors and exceptions

	Running the application

	Chapter summary

	Chapter 4 Azure AI Language
	Introducing Azure AI Language service
	Creating a sample application
	Setting up the Azure AI Language resources
	Creating a WPF sample project
	Designing the user interface
	Natural language processing in C#
	Errors and exceptions

	Running the application

	Chapter summary

	Chapter 5 Azure AI Document Intelligence
	Introducing Azure AI Document Intelligence
	Services of Azure AI Document Intelligence

	Configuring the Azure resources
	Sample application: processing invoices
	Defining the user interface
	Document analysis in C#
	Errors and exceptions

	Running the application

	Hints about training and analyzing custom models
	Chapter summary

	Chapter 6 Azure AI Content Safety
	Introducing Azure AI Content Safety
	Summary of Azure AI Content Safety capabilities
	Services of Azure AI Content Safety

	Configuring the Azure resources
	Sample application: text safety
	Running the application

	Sample application: image safety
	Defining the user interface
	Image safety in C#
	Running the application
	Hints about content safety analysis on videos

	Errors and exceptions
	Chapter summary

	Chapter 7 Azure AI Translator
	Introducing Azure AI Translator
	Configuring the Azure resources
	Sample application: text translation
	Running the application

	Sample application: transliteration
	Running the application

	Sample application: dictionary lookup
	Running the application

	Sample application: document translation
	Brief introduction to Azure Blob Storage
	Setting up the Azure Blob Storage
	Creating containers
	Defining shared access signatures

	Creating a Console app
	Running the application

	Errors and exceptions
	Chapter summary

	Chapter 8 Azure AI Speech
	Introducing Azure AI Speech
	Speech-to-text
	Text-to-speech
	Speech translation
	Additional features

	Creating the required Azure resources
	Sample application: speech-to-text
	Defining the user interface
	Adding speech-to-text capabilities in C#
	Running the application

	Sample application: text-to-speech
	Defining the user interface
	Adding text-to-speech capabilities in C#
	Running the application

	Sample application: speech translation
	Defining the user interface
	Adding speech translation capabilities in C#
	Running the application

	Errors and exceptions
	Chapter summary

	Chapter 9 Azure AI Computer Vision Services
	Introducing Azure AI Computer Vision services
	Exclusions and limitations

	Configuring the Azure AI Computer Vision resources
	Sample application: image analysis
	Defining the user interface
	Image analysis in C#
	Running the application

	Sample application: face detection
	Configuring the Azure resources
	Defining the user interface
	Face detection in C#

	Sample application: OCR
	Defining the user interface
	OCR in C#
	Running the application

	Hints about Spatial Analysis
	Errors and exceptions
	Chapter summary

	Conclusion

